Advertisement

Microstructural Evolution of an Al–Zn–Mg–Cu Aluminum Alloy During an Optimized Two-Step Homogenization Treatment

  • Hongwei YanEmail author
  • Xiwu Li
  • Zhihui Li
  • Shuhui Huang
  • Hongwei Liu
  • Lizhen Yan
  • Wen Kai
  • Yong’an Zhang
  • Baiqing Xiong
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

The microstructural evolution of an Al–Zn–Mg–Cu aluminum alloy during an optimized two-step homogenization treatment was investigated by optical microscopy (OM) and scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and differential scanning calorimetry (DSC). It mainly focused on secondary phase transformation and dissolution. Methods such as and differential scanning calorimetry (DSC) was used to investigate the heat change of each specimen as an indication of phase transformation involved in the homogenization. The results showed that the lamellar eutectic phase had the trend of spheroidizing during the treatment at 400 °C, and the T-Al2Mg2Zn3 phase was transformed into S-Al2CuMg phase. Further dissolution of T phase was not obvious at second step homogenization even after the holding time was extended to more than 24 h.

Keywords

Aluminum alloy Homogenization DSC Microstructure evolution 

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0300803).

References

  1. 1.
    F. Xie, X. Yan, L. Ding, F. Zhang, S. Chen, G. Men, Y. Chang, Mater. Sci. Eng. A 355(1–2), 144–153 (2003)CrossRefGoogle Scholar
  2. 2.
    X.M. Li, M.J. Starink, Mater. Sci. Technol. 17(11), 1324–1328 (2001)CrossRefGoogle Scholar
  3. 3.
    Y. Deng, Z.M. Yin, F.G. Cong, Intermetallics 26, 114–121 (2012)CrossRefGoogle Scholar
  4. 4.
    J.D. Robson, P.B. Prangnell, Acta Mater. 49(4), 599–613 (2001)CrossRefGoogle Scholar
  5. 5.
    Z. Guo, G. Zhao, X.G. Chen, Mater. Charact. 102, 122–130 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Mondal, A.K. Mukhopadhyay, Mater. Sci. Eng. A 391(1–2), 367–376 (2005)CrossRefGoogle Scholar
  7. 7.
    U. Tenzler, E. Cyrener, G. Tempus, Aluminium 75(6), 524–530 (1999)Google Scholar
  8. 8.
    L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, E.V. Lysova, J. Alloy. Compd. 367(1–2), 10–16 (2004)CrossRefGoogle Scholar
  9. 9.
    S.D. Liu, Y.B. Yuan, C.B. Li, J.H. You, X.M. Zhang, Met. Mater. Int. 18(4), 679–683 (2012)CrossRefGoogle Scholar
  10. 10.
    N.K. Li, J.Z. Cui, Trans. Nonferrous Met. Soc. China 18(4), 769–773 (2008)CrossRefGoogle Scholar
  11. 11.
    K. Chen, H. Liu, Z. Zhang, S. Li, I.T. Richard, J. Mater. Process. Technol. 142(1), 190–196 (2003)CrossRefGoogle Scholar
  12. 12.
    F.G. Cong, G. Zhao, F. Jiang, N. Tian, R.F. Li, Trans. Nonferrous Met. Soc. China 25(4), 1027–1034 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hongwei Yan
    • 1
    Email author
  • Xiwu Li
    • 1
  • Zhihui Li
    • 1
  • Shuhui Huang
    • 1
  • Hongwei Liu
    • 1
  • Lizhen Yan
    • 1
  • Wen Kai
    • 1
  • Yong’an Zhang
    • 1
  • Baiqing Xiong
    • 1
    • 2
  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGRIMAT Engineering Institute Co., Ltd.BeijingChina
  2. 2.GRINM Group Co., Ltd.BeijingChina

Personalised recommendations