Advertisement

End-to-End Latency Optimization in Software Defined LEO Satellite Terrestrial Systems

  • Shaowen Zheng
  • Zhenxiang Gao
  • Xu Shan
  • Weihua ZhouEmail author
  • Yongming Wang
  • Xiaohui Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 972)

Abstract

Leveraging the concept of software-defined network (SDN), the integration of terrestrial and satellite networks improves the scalability and flexibility of networks. But resulting from the instability of satellite systems and ultra-high traffic volume of terrestrial networks, it is challenging to guarantee the end-to-end latency. Two major factors damage end-to-end latency are studied respectively in this paper. The first one is delay fluctuation due to limited resource and uneven traffic distribution of feeder. A load balancing algorithm based on the subset matching problem is proposed to mitigate the fluctuation. The second one is long forwarding latency due to excessive load in terrestrial networks, a resource allocation based on dynamic queue evaluation is proposed to decline the latency. Simulation results show the efficiency of our algorithm.

Keywords

LEO satellite networks End-to-end latency Load balancing Resource allocation 

Notes

Acknowledgment

This work was supported by research project of shanghai science and technology commission (Grant No. 17DZ1100702) in China.

References

  1. 1.
    3GPP TR22.822: Study on using Satellite Access in 5G, V0.2.0, February 2018Google Scholar
  2. 2.
    3GPP TR38.811: Study on New Radio (NR) to support non terrestrial networks, V0.3.0, December 2017Google Scholar
  3. 3.
    Kreutz, D., Ramos, F.M.V., Verissimo, P.E., et al.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)CrossRefGoogle Scholar
  4. 4.
    Liu, J., Shi, Y., Zhao, L., et al.: Joint placement of controllers and gateways in SDN-enabled 5G-satellite integrated network. IEEE J. Sel. Areas Commun. 36(2), 221–232 (2018)CrossRefGoogle Scholar
  5. 5.
    Alagoz, F., Korcak, O., Jamalipour, A.: Exploring the routing strategies in next-generation satellite networks. IEEE Wirel. Commun. 14(3) (2007)CrossRefGoogle Scholar
  6. 6.
    Li, F., Lam, K.Y., Liu, X., et al.: Joint pricing and power allocation for multibeam satellite systems with dynamic game model. IEEE Trans. Veh. Technol. 67(3), 2398–2408 (2018)CrossRefGoogle Scholar
  7. 7.
    Bayhan, S., Gür, G., Alagöz, F.: Performance of delay-sensitive traffic in multi-layered satellite IP networks with on-board processing capability. Int. J. Commun Syst. 20(12), 1367–1389 (2007)CrossRefGoogle Scholar
  8. 8.
    Nishiyama, H., Kudoh, D., Kato, N., et al.: Load balancing and QoS provisioning based on congestion prediction for GEO/LEO hybrid satellite networks. Proc. IEEE 99(11), 1998–2007 (2011)CrossRefGoogle Scholar
  9. 9.
    Yoon, M.S., Kamal, A.E.: NFV resource allocation using mixed queuing network model In: Global Communications Conference, pp. 1–6. IEEE (2016)Google Scholar
  10. 10.
    Teymoori, P., Sohraby, K., Kim, K.: A fair and efficient resource allocation scheme for multi-server distributed systems and networks. IEEE Trans. Mob. Comput. 15(9), 2137–2150 (2016)CrossRefGoogle Scholar
  11. 11.
    Hao, F., Kodialam, M., Lakshman, T.V., et al.: Online allocation of virtual machines in a distributed cloud. IEEE/ACM Trans. Netw. 25(1), 238–249 (2017)CrossRefGoogle Scholar
  12. 12.
    Bouttier, E., Dhaou, R., Arnal, F., et al.: Analysis of content size based routing schemes in hybrid satellite/terrestrial networks. In: IEEE Global Communications Conference, pp. 1–6 (2016)Google Scholar
  13. 13.
    Jia, X., Lv, T., He, F., et al.: Collaborative data downloading by using inter-satellite links in leo satellite networks. IEEE Trans. Wirel. Commun. 16(3), 1523–1532 (2017)CrossRefGoogle Scholar
  14. 14.
    Qu, X., Duan, Y., Liu, W., et al.: Dynamic load balancing for delay CDF α-percentile optimization with a global view. In: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1300–1304. IEEE (2015)Google Scholar
  15. 15.
    Huang, L., Zhang, S., Chen, M., et al.: When backpressure meets predictive scheduling. IEEE/ACM Trans. Netw. (TON) 24(4), 2237–2250 (2016)CrossRefGoogle Scholar
  16. 16.
    Perner, P. (ed.): Machine Learning and Data Mining in Pattern Recognition. LNCS (LNAI), vol. 6871. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23199-5CrossRefzbMATHGoogle Scholar
  17. 17.
    Little, J.D.C., Graves, S.C.: Little’s Law in Building Intuition, pp. 81–100. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-73699-0_5CrossRefGoogle Scholar
  18. 18.
    Cheng, X., Dale, C., Liu, J.: Statistics and social network of youtube videos. In: 2008 16th International Workshop on Quality of Service, IWQoS 2008, pp. 229–238. IEEE (2008)Google Scholar
  19. 19.
    Li, X., Tang, F., Chen, L., et al.: A state-aware and load-balanced routing model for LEO satellite networks. In: IEEE Global Communications Conference GLOBECOM 2017, pp. 1–6. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shaowen Zheng
    • 1
    • 2
  • Zhenxiang Gao
    • 1
  • Xu Shan
    • 1
    • 2
  • Weihua Zhou
    • 1
    Email author
  • Yongming Wang
    • 1
    • 2
  • Xiaohui Zhang
    • 1
    • 2
  1. 1.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations