Advertisement

Performance of Systematic Convolutional Low Density Generator Matrix Codes over Rayleigh Fading Channels with Impulsive Noise

  • Meiying Ji
  • Shengxiao Chen
  • Xiao MaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 972)

Abstract

We investigate the systematic convolutional low density generator matrix (SC-LDGM) codes over Rayleigh fading channels with symmetric alpha-stable (S\(\alpha \)S) impulsive noise. The performance is analyzed by deriving a lower bound based on an equivalent genie-aided (GA) system. Numerical simulations show that the SC-LDGM codes can achieve a significant gain compared to the convolutional codes over Rayleigh fading channels with impulsive noise. Numerical results also show that the performance of the SC-LDGM codes can be around one dB away from Shannon limits at the bit-error rate (BER) of \(10^{-5}\) and matches well with the GA lower bound in the low BER region.

Keywords

Genie-aided (GA) lower bound Impulsive noise Rayleigh fading channels Symmetric alpha-stable (S\(\alpha \)S) model Systematic convolutional low density generator matrix (SC-LDGM) codes 

References

  1. 1.
    Nassar, M., Gulati, K., Mortazavi, Y., Evans, B.L.: Statistical modeling of asynchronous impulsive noise in powerline communication networks. In: 2011 IEEE Global Telecommunications Conference, pp. 1–6. IEEE (2011)Google Scholar
  2. 2.
    Chitre, M.: A high-frequency warm shallow water acoustic communications channel model and measurements. J. Acoust. Soc. Am. 122(5), 2580–2586 (2007)CrossRefGoogle Scholar
  3. 3.
    Weinberg, A.: The impact of pulsed RFI on the coded BER performance of the nonlinear satellite communication channel. IEEE Trans. Commun. 29(5), 605–620 (1981)CrossRefGoogle Scholar
  4. 4.
    Mei, Z., Johnston, M., Le, S., Chen, L.: Density evolution analysis of LDPC codes with different receivers on impulsive noise channels. In: 2015 IEEE/CIC International Conference on Communications in China, pp. 1–6. IEEE (2015)Google Scholar
  5. 5.
    Nikias, C.L., Shao, M.: Signal processing with alpha-stable distributions and applications. Wiley-Interscience, New York (1995)Google Scholar
  6. 6.
    Rajan, A., Tepedelenlioglu, C.: Diversity combining over Rayleigh fading channels with symmetric alpha-stable noise. IEEE Trans. Wireless Commun. 9(9), 2968–2976 (2010)CrossRefGoogle Scholar
  7. 7.
    Mei, Z., Johnston, M., Le Goff, S., Chen, L.: Error probability analysis of M-QAM on Rayleigh fading channels with impulsive noise. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications, pp. 1–5. IEEE (2016)Google Scholar
  8. 8.
    Luo, K., Zhao, M.: Modified EXIT chart method for performance analysis of turbo equalization in non-gaussian impulsive noise environments. J. Electron. Inf. Technol. 31(6), 1386–1389 (2009)Google Scholar
  9. 9.
    Dai, B., Liu, R., Hou, Y., Zhao, L., Mei, Z.: EXIT chart aided LDPC code design for symmetric alpha-stable impulsive noise. IEEE Commun. Lett. 21(3), 464–467 (2017)CrossRefGoogle Scholar
  10. 10.
    Hou, Y., Liu, R., Dai, B., Zhao, L.: Joint channel estimation and LDPC decoding over time-varying impulsive noise channels. IEEE Trans. Commun. 66(6), 2376–2383 (2018)CrossRefGoogle Scholar
  11. 11.
    Mei, Z., Johnston, M., Le Goff, S., Chen, L.: Performance analysis of LDPC-coded diversity combining on Rayleigh fading channels with impulsive noise. IEEE Trans. Commun. 65(6), 2345–2356 (2017)CrossRefGoogle Scholar
  12. 12.
    Ji, M., Chen, S., Ma, X.: Performance of block Markov superposition transmission over non-Gaussian impulsive channels. J. Commun. (in Chinese, 2018)Google Scholar
  13. 13.
    Ma, X., Huang, K., Bai, B.: Systematic block Markov superposition transmission of repetition codes. IEEE Trans. Inf. Theory 64(3), 1604–1620 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gonzalez, J.G., Paredes, J.L., Arce, G.R.: Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals. IEEE Trans. Signal Process. 54(10), 3839–3851 (2006)CrossRefGoogle Scholar
  15. 15.
    Forney, G.D.: Codes on graphs: normal realizations. IEEE Trans. Inf. Theory 47(2), 520–548 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ma, X., Liang, C., Huang, K., Zhuang, Q.: Block Markov superposition transmission: construction of big convolutional codes from short codes. IEEE Trans. Inf. Theory 61(6), 3150–3163 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Electronics and Information TechnologySun Yat-sen UniversityGuangzhouChina
  3. 3.Guangdong Key Laboratory of Information Security TechnologySun Yat-sen UniversityGuangzhouChina

Personalised recommendations