Advertisement

A Survey of Approaches for Promoting Honest Recommendations in Reputation Systems

  • Junsheng Chang
  • Liquan Xiao
  • Weixia Xu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 994)

Abstract

The efficiency of the reputation mechanism fully depends on the number of received recommendations and the quality of each of them, but a peer may not be willing to provide honest recommendations actively in order to pursue its own interest. To address this problem, a number of schemes have been proposed. It is therefore necessary to give an overview of the representative schemes. In this paper, we present a comprehensive discussion on approaches for promoting honest recommendations in reputation systems. We first classify the existing schemes into two categories: protecting the privacy of recommenders and providing incentive to recommenders. The latter can then be sub-divided into two categories: market-based incentive schemes and policy-based incentive schemes. We then survey some representative schemes in the literature belonging to each category, and summarize their unique characteristics and working principles. Moreover, some open problems in each category are also discussed.

Keywords

Incentive mechanism Privacy Reputation system Reputation 

References

  1. 1.
    Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: Proceedings of the Hawaii International Conference on System Sciences 33, Maui, Hawaii (HICSS), January 2000Google Scholar
  2. 2.
    Resnick, P., Zeckhauser, R.: Trust among Strangers in internet transactions: empirical analysis of Ebay’s reputation system. In: Baye, M.R. (ed.) The Economics of the Internet and E-Commerce, Applied Micro Economics, vol. 11. Elsevier Science (2002)Google Scholar
  3. 3.
    Stahl, D.O.: An experimental test of the efficacy of a simple reputation mechanism to solve social dilemmas. J. Econ. Behav. Organ. 94, 116–124 (2013)CrossRefGoogle Scholar
  4. 4.
    Xiong, L., Liu, L.: PeerTrust: supporting reputation-based trust in peer-to-peer communities. IEEE Trans. Data Knowl. Eng. 16(7), 843–857 (2004). Special Issue on Peer-to-Peer Based Data ManagementCrossRefGoogle Scholar
  5. 5.
    Jurca, R., Faltings, B.: An incentive compatible reputation mechanism. In: Proceedings of the IEEE Conference on Electronic Commerce, Newport Beach, CA, USA, pp. 285–292 (2003)Google Scholar
  6. 6.
    Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: the peer-prediction method. Manage. Sci. 51(9), 1359–1373 (2005)CrossRefGoogle Scholar
  7. 7.
    Jurca, R., Faltings, B.: Minimum payments that reward honest reputation feedback. In: Proceedings of the ACM Conference on Electronic Commerce (EC 2006), Ann Arbor, Michigan, 11–15 June 2006, pp. 190–199 (2006)Google Scholar
  8. 8.
    Jurca, R., Faltings, B.: Collusion resistant, incentive compatible feedback payments. In: Proceedings of the ACM Conference on E-Commerce (EC 2007), San Diego, 11–15 June 2007, pp. 200–209 (2007)Google Scholar
  9. 9.
    Jurca, R., Garcin, F., Talwar, A., Faltings, B.: Reporting incentives and biases in online review forums. ACM Trans. Web (TWEB) 4(2), 1–27 (2010)CrossRefGoogle Scholar
  10. 10.
    Gudes, E., Gal-Oz, N., Grubshtein, A.: Methods for computing trust and reputation while preserving privacy. In: Gudes, E., Vaidya, J. (eds.) DBSec 2009. LNCS, vol. 5645, pp. 291–298. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03007-9_20CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.C., Fang, Y.G.: A fine-grained reputation system for reliable service selection in peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 18(8), 1134–1145 (2007)CrossRefGoogle Scholar
  12. 12.
    Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized additive reputation systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 108–119. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24747-0_9CrossRefGoogle Scholar
  13. 13.
    Kinateder, M., Pearson, S.: A privacy-enhanced peer-to-peer reputation system. In: Proceedings of the 4th International Conference on Electronic Commerce and Web Technologies (EC-Web), Prague, Czech Republic, pp. 206–215 (2003)CrossRefGoogle Scholar
  14. 14.
    Yonezawa, K.: A novel protocol for communicating reputation in P2P networks. In: Proceedings of 4th International Conference on Trust Management, iTrust 2006, Pisa, Italy, pp. 412–422 (2006)Google Scholar
  15. 15.
    Hasan, O., Brunie, L., Bertino, E.: Preserving privacy of feedback providers in decentralized reputation systems. Comput. Secur. (2012).  https://doi.org/10.1016/j.cose.2011.12.003CrossRefGoogle Scholar
  16. 16.
    Lajoie-Mazenc, P., Anceaume, E., Guette, G., Sirvent, T., Viet Triem Tong, V.: Privacy-preserving reputation mechanism: a usable solution handling negative ratings. In: Damsgaard Jensen, C., Marsh, S., Dimitrakos, T., Murayama, Y. (eds.) IFIPTM 2015. IAICT, vol. 454, pp. 92–108. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18491-3_7CrossRefGoogle Scholar
  17. 17.
    Hasan, O., Brunie, L., Bertino, E., Shang, N.: A decentralized privacy preserving reputation protocol for the malicious adversarial model. IEEE Trans. Inf. Forensics Secur. 8(6), 949–962 (2013)CrossRefGoogle Scholar
  18. 18.
    Schaub, A., Bazin, R., Hasan, O., Brunie, L.: A trustless privacy-preserving reputation system. In: Hoepman, J.H., Katzenbeisser, S. (eds.) ICT Systems Security and Privacy Protection. SEC 2016. IFIP Advances in Information and Communication Technology, vol. 471, pp. 398–411. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-33630-5_27CrossRefGoogle Scholar
  19. 19.
    Lin, H., Xu, L., Mu, Y., Wu, W.: A reliable recommendation and privacy-preserving based cross-layer reputation mechanism for mobile cloud computing. Future Gener. Comput. Syst. 52(C), 125–136 (2015)CrossRefGoogle Scholar
  20. 20.
    Dellarocas, C.: Goodwill hunting: an economically efficient online feedback mechanism for environments with variable product quality. In: Padget, J., Shehory, O., Parkes, D., Sadeh, N., Walsh, W.E. (eds.) AMEC 2002. LNCS (LNAI), vol. 2531, pp. 238–252. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36378-5_15CrossRefGoogle Scholar
  21. 21.
    Fernandes, A., Kotsovinos, E., Östring, S., Dragovic, B.: Pinocchio: incentives for honest participation in distributed trust management. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 63–77. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24747-0_6CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, H., Yang, X., Li, X.: An incentive mechanism to reinforce truthful reports in reputation systems. J. Netw. Comput. Appl. 35, 951–961 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhao, H., Yang, X., Li, X.: WIM: a wage-based incentive mechanism for reinforcing truthful feedbacks in reputation systems. In: Global Telecommunications Conference, pp. 1–5 (2010)Google Scholar
  24. 24.
    Papaioannou, T.G., Stamoulis, G.D.: An incentives’ mechanism promoting truthful feedback in peer-to-peer systems. In: Proceedings of the 5th IEEE/ACM International Symposium in Cluster Computing and the Grid, Cardi, UK, vol. 1, pp. 275–283 (2005)Google Scholar
  25. 25.
    Papaioannou, T.G., Stamoulis, G.D.: A mechanism that provides incentives for truthful feedback in peer-to-peer systems. Electron. Commer. Res. 10, 331–362 (2010)CrossRefGoogle Scholar
  26. 26.
    Liu, X., et al.: When differential privacy meets randomized perturbation: a hybrid approach for privacy-preserving recommender system. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017, Part I. LNCS, vol. 10177, pp. 576–591. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55753-3_36CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Cohen, R., Larson, K.: A trust-based incentive mechanism for e-marketplaces. In: Falcone, R., Barber, S.K., Sabater-Mir, J., Singh, M.P. (eds.) TRUST 2008. LNCS (LNAI), vol. 5396, pp. 135–161. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92803-4_8CrossRefGoogle Scholar
  28. 28.
    Liu, J.H., Issarny, V.: An incentive compatible reputation mechanism for ubiquitous computing environments. In: Proceedings of International Conference on Privacy, Security and Trust, Toronto, Canada, pp. 297–311 (2006)Google Scholar
  29. 29.
    Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76(15), 146–164 (2015)CrossRefGoogle Scholar
  30. 30.
    Xie, H., Lui, J.C.S., Towsley, D.: Incentive and reputation mechanisms for online crowdsourcing systems. In: IEEE International Symposium on Quality of Service, pp. 207–212 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations