Advertisement

Two Anti-quantum Attack Protocols for Secure Multiparty Computation

  • Lichao Chen
  • Zhanli LiEmail author
  • Zhenhua Chen
  • Yaru Liu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 960)

Abstract

Millionaire problem and private set intersection problem are not only the basic issues in the secure multiparty computation, but also the building block for privacy-preserving cooperative computation. However, so far the existing solutions to the two problems cannot resist the quantum attack, and in the meanwhile are inefficient enough. Aiming at these drawbacks, in this paper we first construct two new 0–1 encoding. Subsequently, using the designed 0–1 encoding, we transform Millionaire problem into the summation problem, and further transform the set intersection problem into the product problem. Lastly, taking advantage of NTRU homomorphic encryption, we propose Protocol 1 for Millionaire problem and Protocol 2 for the secure set intersection problem, respectively. The final analyses indicate that the two protocols designed in this paper are not only secure against the quantum attack but also more efficient compared with the previous schemes, In addition, Protocol 1 has more fine-grained comparing result for any two elements in total order set than the previous; Protocol 2 has a two-fold functionality in that it is not only secure against quantum attacks but also applicable for cloud computing environment.

Keywords

Millionaire problem Private set intersection Cloud computing Multi-key NTRU 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. U1261114), the National Natural Science Foundation of China (Grant No. 61872289), Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201714), and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JM6069).

References

  1. 1.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science, Piscataway, pp. 160–164. IEEE (1982)Google Scholar
  2. 2.
    Feng, D.G., Zhang, M., Zhang, Y., et al.: Study on cloud computing security. J. Softw. 22(1), 71–83 (2011). (in Chinese)CrossRefGoogle Scholar
  3. 3.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, Piscataway, pp. 218–229. IEEE Press (1987)Google Scholar
  4. 4.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, pp. 599–729. Cambridge University Press, London (2004)zbMATHGoogle Scholar
  5. 5.
    Li, Y.P., Chen, M.H., Li, Q.W., et al.: Enabling multilevel trust in privacy preserving data mining. IEEE Trans. Knowl. Data Eng. Inst. Electr. Electron. Eng. 24(9), 1598–1612 (2012)Google Scholar
  6. 6.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of ACM International Conference oil Management of Data and Symposium on Principles of Database Systems, pp. 439–450. ACM Press, New York (2000)Google Scholar
  7. 7.
    Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 25(2), 761–766 (2009)Google Scholar
  8. 8.
    Clifton, C., Marks, D.: Security and privacy implications of data mining. In: Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, pp. 15–19. ACM Press, New York (1996)Google Scholar
  9. 9.
    Loftus, J., Smart, N.P.: Secure outsourced computation. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 1–20. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21969-6_1CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  11. 11.
    Du, W.L., Atallah, M.J.: Privacy-preserving cooperative scientific computations. In: Proceedings of 14th IEEE Computer Security Foundations Workshop Lecture, Piscataway, pp. 273–282. IEEE Press (2001)Google Scholar
  12. 12.
    Chen, Z.H., Li, S.D., Huang, Q., et al.: Privacy-preserving determination of spatial location relation in cloud computing. Chin. J. Comput. 40(2), 351–363 (2017). (in Chinese)MathSciNetGoogle Scholar
  13. 13.
    Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_15CrossRefGoogle Scholar
  14. 14.
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th Annual Symposium on Foundations of Computer Science (FOCS 1986), pp. 162–167. Institute of Electrical and Electronics Engineers (1986)Google Scholar
  15. 15.
    Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_10CrossRefGoogle Scholar
  16. 16.
    Ioannidis, I., Grama, A.: An efficient protocol for Yao’s millionaires’ problem. In: Proceedings of the 36th Hawaii International Conference on System Sciences, Hawaii, USA, pp. 6–9 (2003)Google Scholar
  17. 17.
    Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_31CrossRefGoogle Scholar
  18. 18.
    Li, S.D., Wang, D.S.: Efficient secure multiparty computation based on homomorphic encryption. Chin. J. Electron. 41(4), 798–803 (2013). (in Chinese)MathSciNetGoogle Scholar
  19. 19.
    Zuo, X.J., Li, S.D., Yang, X.L.: An efficient homomorphic encryption based solution to millionaires’ problem. J. Chin. Comput. Syst., 455–459 (2017). (in Chinese)Google Scholar
  20. 20.
    Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX Security 2014, pp. 797–812. USENIX (2014)Google Scholar
  21. 21.
    Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_4CrossRefGoogle Scholar
  22. 22.
    Zhu, G.B., Tan, Y.W., Zhao, Y., et al.: An efficient and secure geometric intersection computation protocol. J. Univ. Electron. Sci. Technol. China 43(5), 781–786 (2014). (in Chinese)Google Scholar
  23. 23.
    Li, S.D., Dou, J.W., Jia, X.L.: Secure two-party computation for set intersection problem. J. Xian Jiaotong Univ. 40(10), 1091–1093 (2006). (in Chinese)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on outsourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IFIP AICT, vol. 455, pp. 3–17. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18467-8_1CrossRefGoogle Scholar
  25. 25.
    Li, S.D., Zhou, S.F., Guo, Y.M., et al.: Secure set computing in cloud environment. J. Softw. 27(6), 1549–1565 (2016). (in Chinese)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054868CrossRefGoogle Scholar
  27. 27.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  28. 28.
    Peikert, C.: Lattice cryptography for the internet. In: 6th International Conference on Post-Quantum Cryptograp (PQCrypto 2014), Waterloo, ON, Canada, pp. 197–219 (2014)zbMATHGoogle Scholar
  29. 29.
    Duan, R., Gu, C.X., Zhu, Y.F., et al.: Efficient identity-based fully homomorphic encryption over NTRU. J. Commun. 38(1), 66–75 (2017). (in Chinese)Google Scholar
  30. 30.
    Xia, F., Yang, B., Zhang, M.W., et al.: Secure two-party computation for set intersection and set equality problems based on LWE. J. Electron. Inf. Technol. 34(2), 462–467 (2012). (in Chinese)Google Scholar
  31. 31.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, Victoria, BC, Canada, pp. 197–206. ACM (2008)Google Scholar
  32. 32.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)Google Scholar
  33. 33.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lichao Chen
    • 1
  • Zhanli Li
    • 1
    Email author
  • Zhenhua Chen
    • 1
  • Yaru Liu
    • 1
  1. 1.School of Computer Science and TechnologyXi’an University of Science and TechnologyXi’anChina

Personalised recommendations