Ciphertext-Policy Attribute-Based Encryption for Circuits from Lattices Under Weak Security Model

  • Jian ZhaoEmail author
  • Haiying Gao
  • Bin Hu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 960)


The existing Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme from lattices can only support a simple threshold access structure, resulting in its limited application scenario. In order to improve the flexibility and expressiveness of the CP-ABE scheme, we present a CP-ABE for circuits from lattices in this paper. The new scheme generates secret key for each attribute of the attribute set by invoking the sampling algorithm from lattices and embeds the attribute set into the secret keys. Meanwhile, to associate the ciphertext with a circuit, we design a Secret Matrix Distribution Mechanism (SMDM) for circuits, which distributes a matrix with specific form to each node of the circuit, and the scheme can generate the ciphertexts by combining the matrices of the leaf nodes. In the decryption phase, the SMDM guarantees the user who satisfies the access structure can decrypt the ciphertexts correctly. Finally, we prove that our scheme is secure against chosen plaintext attack in the selective weak security model under the Learning with Errors (LWE) assumptions.


Ciphertext-policy Attribute-Based Encryption (ABE) Learning with Errors (LWE) Lattices Circuits 


  1. 1.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). Scholar
  2. 2.
    Goyal, V., Pandey, O., Sahai, A., et al.: Attribute-based encryption for fine grained access control of encrypted data. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS 2006), pp. 89–98. ACM, New York (2006).
  3. 3.
    Yinan, S.: Attribute-based encryption algorithm. M.S. dissertation, Shanghai Jiao Tong University, pp. 32–33 (2010)Google Scholar
  4. 4.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or Fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012). Scholar
  5. 5.
    Jiang, Z, Zhenfeng, Z, Aijun, G.: Ciphertext policy attribute-based encryption from lattices. In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2012), pp. 16–17. ACM, New York (2012).
  6. 6.
    Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). Scholar
  7. 7.
    Xiang, X., Rui, X.: Attribute-Based Encryption for a Subclass of Circuits with Bounded Depth from Lattices. IACR Cryptology ePrint Archive, Accessed 2013
  8. 8.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based Encryption for Circuits. IACR Cryptology ePrint Archive, Accessed 2013
  9. 9.
    Boneh, D, Nikolaenko, V, Segev, G.: Attribute-based Encryption for Arithmetic Circuits. IACR Cryptology ePrint Archive, Accessed 2013
  10. 10.
    Yongtao, W.: Lattice ciphertext policy attribute-based encryption in the standard model. Int. J. Netw. Secur. 16(6), 444–451 (2014)Google Scholar
  11. 11.
    Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer, Cham (2015). Scholar
  12. 12.
    Fang, B.R.: Matrix Theory. Tsing University Press, Beijing (2013)Google Scholar
  13. 13.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(535), 75–86 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zhao, J.: Research on attribute-based encryption from lattices. M.S. dissertation, Zhengzhou Information Science and Technology Institute, 4–7 2015Google Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). Scholar
  16. 16.
    Oded, R.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM STOC 56(34), 1–40 (2005)zbMATHGoogle Scholar
  17. 17.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). Scholar
  18. 18.
    Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776. Springer, Heidelberg (2015). Scholar
  19. 19.
    Ibraimi, L., Tang, Q., Hartel, P., Jonker, W.: Efficient and provable secure ciphertext-policy attribute-based encryption schemes. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 1–12. Springer, Heidelberg (2009). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Zhengzhou Information Science and Technology InstituteZhengzhouChina

Personalised recommendations