Advertisement

A Study on Application Method for Automation Solution Using Blockchain dApp Platform

  • Seong-Kyu Kim
  • Hyun-Taek Kwon
  • Young-Kun Kim
  • Yong-Pil Park
  • Dae-Won Keum
  • Ung-Mo KimEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 931)

Abstract

The GOB Chain is a universal Blockchain platform designed to play the role of a perfect Blockchain hub for every Blockchain. First, it connects every Blockchain in order to facilitate the exchange of data between Blockchains based on W3C standard meta data, thus guaranteeing inter-operability and use, as well as searches of transaction information. In addition, it links the Blockchain technology to various existing legacy systems so that it can be immediately applied to the business in service. It allows the GOB chain to apply the Blockchain technology to existing businesses at the sites of the Fourth Industrial Revolution, thus enabling new productivity and competitiveness and improving profitability to a remarkable extent. The GOB Chain cooperates with all Blockchain technologies, companies, and researchers around the world to overcome the limitations of the existing Blockchain technology, and implements the Blockchain-platform ecology chain and the eco system, making our lives more convenient while revolutionizing every industry. In addition, it automates all block-chain systems and suggests a system that anyone can easily provide, operate, and maintain block-chain services.

Keywords

Blockchain IoT KYD M2M Whitechain Authentification BoT IIoT SaaS PssS IaaS BMS BaaS Smart contract Rainbowchain dApp 

References

  1. 1.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, pp. 1–9 (2008)Google Scholar
  2. 2.
    Huh, J.-H., Seo, K.: Blockchain-based mobile fingerprint verification and automatic log-in platform for future computing. J. Supercomput. 1–17 (2018)Google Scholar
  3. 3.
    Huh, J.-H., Otgonchimeg, S., Seo, K.: Advanced metering infrastructure design and test bed experiment using intelligent agents: focusing on the PLC network base technology for Smart Grid system. J. Supercomput. 72(5), 1862–1877 (2016)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.: Blockchain tokens and the potential democratization of entrepreneurship and innovation. In: SSRN, pp. 12–13 (2017)Google Scholar
  5. 5.
    Nir Kshetri, Y.: Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 39, 80–82 (2018)CrossRefGoogle Scholar
  6. 6.
    Savelyev, A.: Copyright in the Blockchain Era: promises and challenges. Comput. Law Secur. Rev. (2018)Google Scholar
  7. 7.
    Kshetri, N.: Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 41(10), 1027–1038 (2017)CrossRefGoogle Scholar
  8. 8.
    Kim, S.-K., Huh, J.-H.: A study on the improvement of smart grid security performance and blockchain smart grid perspective. Energies 11(7), 1–22 (2018). MDPICrossRefGoogle Scholar
  9. 9.
    Levin, R.B., Waltz, P., LaCount, H.: Betting blockchain will change everything – SEC and CFTC regulation of blockchain technology. Handbook of Blockchain, Digital Finance, and Inclusion, vol. 2, pp. 187–212. Elsevier, Cambridge (2017)Google Scholar
  10. 10.
    Prybila, C., Schulte, S., Hochreiner, C., Webe, I.: Runtime verification for business processes utilizing the Bitcoin Blockchain. Future Gener. Comput. Syst. (2017)Google Scholar
  11. 11.
    Sikorski, J.J., Haughton, J., Kraft, M.: Blockchain technology in the chemical industry: machine-to-machine electricity market. Appl. Energy 195, 234–246 (2017)CrossRefGoogle Scholar
  12. 12.
    Saberi, S., Kouhizadeh, M., Sarkis, J.: Blockchain technology: a panacea or pariah for resources conservation and recycling. In: TTC, pp. 15–16 (2018)Google Scholar
  13. 13.
    Huh, J.-H., Seo, K.: A typeface searching technique using evaluation functions for shapes and positions of alphabets used in ancient books for image searching. Int. J. Hybrid Inf. Technol. 9(9), 283–292 (2016). SERSCCrossRefGoogle Scholar
  14. 14.
    Huh, J.-H.: Server operation and virtualization to save energy and cost in future sustainable computing. Sustainability 10(6), 1–20 (2018). MDPICrossRefGoogle Scholar
  15. 15.
    Qin, B., et al.: Cecoin: a decentralized PKI mitigating MitM attacks. Future Gener. Comput. Syst. (2017)Google Scholar
  16. 16.
    Wang, H., He, D., Ji, Y.: Designated-verifier proof of assets for bitcoin exchange using elliptic curve cryptography. In: TTC, pp. 21–24 (2017)Google Scholar
  17. 17.
    Löbbe, S., Hackbarth, A.: The Transformation of the German Electricity Sector and the Emergence of New Business Models in Distributed Energy Systems, pp. 287–318. Elsevier, Cambridge (May 2017). Chapter 15CrossRefGoogle Scholar
  18. 18.
    Huh, J.-H.: Smart grid test bed using OPNET and power line communication. In: Advances in Computer and Electrical Engineering, pp. 1–425. IGI Global, USA (2017)Google Scholar
  19. 19.
    Dorri, A., Kanhere, S.S., Jurdak, R.: Towards an optimized blockchain for IoT. In: Proceedings of the Second International Conference on Internet-of-Things Design and Implementation, pp. 173–178. ACM (2017)Google Scholar
  20. 20.
    Pop, C., Cioara, T., Antal, M., Anghel, I., Salomie, I., Bertoncini, M.: Blockchain based decentralized management of demand response programs in smart energy grids. Sensors 18, 162 (2018). MDPICrossRefGoogle Scholar
  21. 21.
    Huh, J.-H.: PLC-based design of monitoring system for ICT-integrated vertical fish farm. Hum.-centric Comput. Inf. Sci. 7(20), 1–19 (2017)Google Scholar
  22. 22.
    Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security and privacy: the case study of a smart home. In: Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerComWorkshops), Kona, HI, USA, 13–17 March 2017 (2017)Google Scholar
  23. 23.
    Huh, J.-H., Kim, T.-J.: A location-based mobile health care facility search system for senior citizens. J. Supercomput. 1–18 (2018)Google Scholar
  24. 24.
    Underwood, S.: Blockchain beyond bitcoin. Commun. ACM 59(11), 15–17 (2016)CrossRefGoogle Scholar
  25. 25.
    Leiding, B., Memarmoshrefi, P., Hogrefe, D.: Self-managed and blockchain-based vehicular ad-hoc networks. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 137–140. ACM (2016)Google Scholar
  26. 26.
    Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 315–324. ACM (2017)Google Scholar
  27. 27.
    Ngu, H.C.V., Huh, J.-H.: B+-tree construction on massive data with Hadoop. Cluster Comput. 1–11 (2017)Google Scholar
  28. 28.
    Karame, G.: On the security and scalability of bitcoin’s blockchain. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1861–1862. ACM (2016)Google Scholar
  29. 29.
    Huh, J.-H., Seo, K.: Hybrid advanced metering infrastructure design for micro grid using the game theory model. Int. J. Softw. Eng. Appl. 9(9), 257–268 (2015). SERSCGoogle Scholar
  30. 30.
    Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 365–382. ACM (2016)Google Scholar
  31. 31.
    Hori, M., Ohashi, M.: Adaptive Identity authentication of blockchain system-the collaborative cloud educational system. In: EdMedia+Innovate Learning, Association for the Advancement of Computing in Education (AACE), pp. 1339–1346 (2018)Google Scholar
  32. 32.
    Lee, S., Huh, J.-H.: An effective security measures for nuclear power plant using big data analysis approach. J. Supercomput. 1–28 (2018)Google Scholar
  33. 33.
    Florescu, D., Kossmann, D.: Storing and querying XML data using an RDMBS. Special Issue IEEE Data Eng. Bull. 1060(22), 27–34 (1999). IEEEGoogle Scholar
  34. 34.
    Shanmugasundaram, J., et al.: Relational databases for querying XML documents: limitations and opportunities. In: Proceedings of VLDB, Edinburgh, Scotland (1999)Google Scholar
  35. 35.
    Huh, J.-H., Lee, D., Seo, K.: Implementation of graphic based network intrusion detection system for server operation. Int. J. Secur. Appl. 9(2), 37–48 (2015). SERSCGoogle Scholar
  36. 36.
    Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. I. J. Netw. Secur. 19(5), 653–659 (2017)Google Scholar
  37. 37.
    Eom, S., Huh, J.-H.: Group signature with restrictive linkability: minimizing privacy exposure in ubiquitous environment. J. Ambient Intell. Human. Comput. 1–11 (2018)Google Scholar
  38. 38.
    Huh, J.-H.: Implementation of lightweight intrusion detection model for security of smart green house and vertical farm. Int. J. Distrib. Sens. Netw. 14(4), 1–11 (2018)CrossRefGoogle Scholar
  39. 39.
    Kshetri, N.: Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 41, 1027–1038 (2017)CrossRefGoogle Scholar
  40. 40.
    Jabbar, K., Bjørn, P.: Growing the Blockchain information infrastructure. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 6487–6498. ACM (2017)Google Scholar
  41. 41.
    Due.com: How blockchain improves security and transaction times. Nasdaq (2017). http://www.nasdaq.com/article/how-blockchain-improves-securityand-transaction-times-cm771339. Accessed 1 Aug 2018
  42. 42.
    Higgins, S.: Hours after launch, OpenBazaar sees first drug listings. CoinDesk (2016). http://www.coindesk.com/drugs-contraband-openbazaar/. Accessed 1 Aug 2018
  43. 43.
    Young, J.: Hackers eye e-commerce platforms, bitcoin-based OpenBazaar to capitalize. The Cointelegraph (2016). https://cointelegraph.com/news/hackerseye-e-commerce-platforms-bitcoin-based-openbazaar-to-capitalize. Accessed 1 Aug 2018
  44. 44.
    Mainelli, M.: Blockchain will help us prove our identities in a digital world. Harvard Business Review (2017). https://hbr.org/2017/03/blockchain-willhelp-us-prove-our-identities-in-a-digital-world. Accessed 1 Aug 2018
  45. 45.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML). World Wide Web J. 2(4), 27–66 (1997)Google Scholar
  46. 46.
    Deutsch, A., Fernandez, M., Suciu, D.: Storing semistructured data with STORED. In: Proceedings of ACM SIGMOD. ACM, Philadelphia (1999)Google Scholar
  47. 47.
    Florescu, D., Kossmann, D.: A performance evaluation of alternative mapping schemes for storing XML data in a relational database. Technical report, INRIA, France (1999)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Seong-Kyu Kim
    • 1
    • 2
  • Hyun-Taek Kwon
    • 2
  • Young-Kun Kim
    • 2
  • Yong-Pil Park
    • 2
  • Dae-Won Keum
    • 2
  • Ung-Mo Kim
    • 3
    Email author
  1. 1.School of Electronic and Electrical Computer EngineeringSungkyunkwan UniversitySeoulRepublic of Korea
  2. 2.GeobluelabSeoulRepublic of Korea
  3. 3.Electronic and Electrical Computer EngineeringSungkyunkwan UniversitySeoulRepublic of Korea

Personalised recommendations