PINUS: Indoor Weighted Centroid Localization with Crowdsourced Calibration

  • Jehn-Ruey JiangEmail author
  • Hanas Subakti
  • Ching-Chih Chen
  • Kazuya Sakai
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 931)


PINUS, an indoor weighted centroid localization (WCL) method with crowdsourced calibration, is proposed in this paper. It relies on crowdsourcing to do the calibration for WCL to improve localization accuracy without the device diversity problem. Smartphones and Bluetooth Low Energy (BLE) beacon devices are applied to realize PINUS for the sake of design validation and performance evaluation.


Bluetooth Beacon Calibration Crowdsourcing Device diversity Indoor localization Weighted centroid localization 



This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, under grant numbers 106-2218-E-008-003-, and 107-2918-I-008-002-. Special thanks go to Tokyo Metropolitan University, Japan, for providing international cooperation research opportunity in 2018.


  1. 1.
    Xu, G., Xu, Y.: GPS: Theory. Algorithms and Applications. Springer, Heidelberg (2016). Scholar
  2. 2.
    Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H.: Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 5 (2015). Article 8328Google Scholar
  3. 3.
    Xiao, J., Zhou, Z., Yi, Y., Ni, L.M.: A survey on wireless indoor localization from the device perspective. ACM Comput. Surv. 49 (2016). Article 25CrossRefGoogle Scholar
  4. 4.
    Yassin, A., et al.: Recent advances in indoor localization: a survey on theoretical approaches and applications. IEEE Commun. Surv. Tutor. 19, 1327–1346 (2016)CrossRefGoogle Scholar
  5. 5.
    Blumenthal, J., Grossmann, R., Golatowski, F., Timmermann, D.: Weighted centroid localization in Zigbee-based sensor networks. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing, pp. 1–6 (2007)Google Scholar
  6. 6.
    Balanis, C.: Antenna Theory Analysis and Design, 3rd edn, pp. 94–105. Wiley, Hoboken (2015)Google Scholar
  7. 7.
    Bluetooth Beacons. Accessed 25 June 2018
  8. 8.
    Wang, B., Chen, Q., Yang, L.T., Chao, H.C.: Indoor smartphone localization via fingerprint crowdsourcing: challenges and approaches. IEEE Wirel. Commun. 23, 82–89 (2016)CrossRefGoogle Scholar
  9. 9.
    Park, J.G., Curtis, D., Teller, S., Ledlie, J.: Implications of device diversity for organic localization. In: Proceedings of IEEE INFOCOM, Shanghai, pp. 3182–3190 (2011)Google Scholar
  10. 10.
    Yang, S., Dessai, P., Verma, M., Gerla, M.: FreeLoc: calibration-free crowdsourced indoor localization. In: Proceedings of IEEE INFOCOM, pp. 2481–2489 (2013)Google Scholar
  11. 11.
    Zhang, C., Subbu, K.P., Luo, J., Wu, J.: GROPING: geomagnetism and crowdsensing powered indoor navigation. IEEE Trans. Mob. Comput. 14, 387–400 (2015)CrossRefGoogle Scholar
  12. 12.
    Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., Sen, R.: Zee: zero-effort crowdsourcing for indoor localization. In: Proceedings of 18th Annual International Conference Mobile Computing and Networking, pp. 293–304 (2012)Google Scholar
  13. 13.
    Wu, C., Yang, Z., Liu, Y.: Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mobile Computing 14, 444–457 (2015)CrossRefGoogle Scholar
  14. 14.
    Luo, C., Hong, H., Chan, M.C.: Piloc: a self-calibrating participatory indoor localization system. In: Proceedings of 13th International Symposium on Information Processing in Sensor Networks, pp. 143–153 (2014)Google Scholar
  15. 15.
    Ledlie, J., et al.: Mole: a scalable, user-generated WiFi positioning engine. J. Locat. Based Serv. 6, 55–80 (2012)CrossRefGoogle Scholar
  16. 16.
    Lee, M., Jung, S.H., Lee, S., Han, D.: Elekspot: a platform for urban place recognition via crowdsourcing. In: Proceedings of 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet, pp. 190–195 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jehn-Ruey Jiang
    • 1
    Email author
  • Hanas Subakti
    • 1
  • Ching-Chih Chen
    • 1
  • Kazuya Sakai
    • 2
  1. 1.National Central UniversityTaoyuan CityTaiwan
  2. 2.Tokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations