Advertisement

The Development of Science Teachers’ Professional Competence

  • Stefan SorgeEmail author
  • Anita Stender
  • Knut Neumann
Chapter

Abstract

On re-examining some of our earlier research into secondary science teachers’ PCK, as we reposition this work within the Refined Consensus Model (RCM) of PCK, we uncover the RCM is not only a model of PCK. We argue the RCM is also a model of science teachers’ professional competence and its development since the model identifies other elements of science teachers’ professional competence, including the role played by broader knowledge bases as well as amplifiers and filters moderating exchanges between knowledge bases. To support our argument, in this chapter, we utilise data from two earlier studies that investigated exchanges between knowledge bases as secondary science teachers develop professional competence. Re-examining this data through the interpretive lens of the RCM, the first study utilised paper–pencil-tests that assessed pre-service physics teachers’ content knowledge (CK), collective PCK (cPCK) and pedagogical knowledge (PK). The analyses reveal a stronger correlation between PK and cPCK in the first half and stronger correlation between CK and cPCK in the second half of teacher education. Again from a RCM perspective, the second study used the same instrument to assess cPCK, plus instructional planning vignettes to assess physics teachers’ personal/enacted PCK (pPCK/ePCK) and standardised paper–pencil questionnaires to examine selected amplifiers and filters. The results suggest an increased influence of cPCK on pPCK/ePCK for more experienced physics teachers, moderated by motivational orientations. This retrospective treatment of earlier research data reveals, as the RCM implies, the development of cPCK is informed by broader professional knowledge bases, whereas cPCK plays a major role in the development of pPCK/ePCK.

References

  1. Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  2. Alonzo, A. C., Berry, A., & Nilsson, P. (2018). Capturing and representing the complexity of PCK in action. In A. Hume, R. Cooper, & A. Borowski (Eds.), Repositioning pedagogical content knowledge in teachers’ professional knowledge. New York: Springer.Google Scholar
  3. Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  4. Baumert, J. (2009). Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung von mathematischer Kompetenz (COACTIV): Dokumentation der Erhebungsinstrumente. Berlin: Max-Planck-Institut für Bildungsforschung.Google Scholar
  5. Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 25–48). Springer US.  https://doi.org/10.1007/978-1-4614-5149-5_2.CrossRefGoogle Scholar
  6. Berliner, D. C. (1986). In pursuit of the expert pedagogue. Educational Researcher, 15(7), 5–13.  https://doi.org/10.3102/0013189X015007007.CrossRefGoogle Scholar
  7. Bishop, A. J., & Whitfield, R. C. (1972). Situations in teaching. McGraw-Hill.Google Scholar
  8. Borko, H., & Livingston, C. (1989). Cognition and improvisation: Differences in mathematics instruction by expert and novice teachers. American Educational Research Journal, 26(4), 473–498.  https://doi.org/10.3102/00028312026004473.CrossRefGoogle Scholar
  9. Borko, H., Roberts, S. A., & Shavelson, R. J. (2008). Teachers’ decision making: From Alan J. Boshop to today. In A. J. Bishop, P. C. Clarkson, & N. C. Presmeg (Eds.), Critical issues in mathematics education. Major contributions of Alan Bishop (pp. 37–67). Springer.Google Scholar
  10. Bransford, J., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.Google Scholar
  11. Darling-Hammond, L., Banks, J., Zumwalt, K., Gomez, L., Sherin, M. G., Griesdorn, J., et al. (2005). Educational goals and purposes: Developing a curricular vision for teaching. In L. Darling-Hammond & J. Bransford (Eds.), Preparing teachers for a changing world. What teachers should learn and be able to do (pp. 169–200). San Francisco, CA: Jossey-Bass.Google Scholar
  12. Fischer, H. E., Borowski, A., & Tepner, O. (2012). Professional knowledge of science teachers. In B. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 435–448). Dordrecht: Springer.CrossRefGoogle Scholar
  13. Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Teaching and learning in science series. Re-examining pedagogical content knowledge in science education (1st ed., pp. 28–41). New York, NY: Routledge.Google Scholar
  14. Großschedl, J., Harms, U., Kleickmann, T., & Glowinski, I. (2015). Preservice biology teachers’ professional knowledge: Structure and learning opportunities. Journal of Science Teacher Education, 26, 291–318.CrossRefGoogle Scholar
  15. Hair, J. F., Hult, G. M., Ringle, C., & Sarstedt, C. (2014). A primer on partial least squares structural equation modelling (PLS-SEM). Thousand Oaks, CA: Sage.Google Scholar
  16. Henze, I., & van Driel, J. H. (2015). Towards a more comprehensive way to capture PCK in its complexity. In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Teaching and learning in science series. Re-examining pedagogical content knowledge in science education (pp. 120–134). New York, NY: Routledge.Google Scholar
  17. Hertel, S., Bruder, S., Jude, N., & Steinert, B. (2013). Parental counselling at secondary schools. ZEITSCHRIFT FUR PADAGOGIK, 40–62.Google Scholar
  18. Hohenstein, F., Kleickmann, T., Zimmermann, F., Köller, O., & Möller, J. (2017). Erfassung von pädagogischem und psychologischem Wissen in der Lehramtsausbildung: Entwicklung eines Messinstruments. Zeitschrift für Pädagogik, H, 1, 91–113.Google Scholar
  19. Keller, M. M., Neumann, K., & Fischer, H. E. (2017). The impact of physics teachers' pedagogical content knowledge and motivation on students’ achievement and interest. Journal of Research in Science Teaching, 54(5), 586–614. doi:10.1002/tea.21378CrossRefGoogle Scholar
  20. Kind, V. (2009). Pedagogical content knowledge in science education: Perspectives and potential for progress. Studies in Science Education, 45(2), 169–204.CrossRefGoogle Scholar
  21. Kirschner, S., Borowski, A., Fischer, H. E., Gess-Newsome, J., & von Aufschnaiter, C. (2016). Developing and evaluating a paper-and-pencil test to assess components of physics teachers’ pedagogical content knowledge. International Journal of Science Education, 38(8), 1343–1372.CrossRefGoogle Scholar
  22. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., et al. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100, 716–725.CrossRefGoogle Scholar
  23. Kunter, M., Kleickmann, T., Klusmann, U., & Richter, D. (2013a). The development of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 63–77). US: Springer.Google Scholar
  24. Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013b). Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820.  https://doi.org/10.1037/a0032583.CrossRefGoogle Scholar
  25. Landis, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.  https://doi.org/10.2307/2529310.CrossRefGoogle Scholar
  26. LimeSurvey Project Team. (2015). LimeSurvey: An open source survey tool. Retrieved from http://www.limesurvey.org.
  27. Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19(6), 527–537.CrossRefGoogle Scholar
  28. Livingston, C., & Borko, H. (1989). Expert-Novice Differences in Teaching: A Cognitive Analysis and Implications for Teacher Education. Journal of Teacher Education, 40(4), 36–42.  https://doi.org/10.1177/002248718904000407.CrossRefGoogle Scholar
  29. Lortie, D. C. (1975). Schoolteacher: A sociological study. Chicago: University of Chicago Press.Google Scholar
  30. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht: Kluver.Google Scholar
  31. National Research Council [NRC]. (2014). Developing assessments for the next generation science standards. Washington, D.C: The National Academies Press.Google Scholar
  32. Neumann, K., Härtig, H., Harms, U., & Parchmann, I. (2017). Science teacher preparation in Germany. In J. Pedersen, T. Isozaki, & T. Hirano (Eds.), Model science teacher preparation programs (pp. 29–52). Charlotte, NC: Information Age Publishing.Google Scholar
  33. Park, S., Jang, J.-Y., Chen, Y.-C., & Jung, J. (2011). Is pedagogical content knowledge (PCK) necessary for reformed science teaching? Evidence from an empirical study. Research in Science Education, 41, 245–260.CrossRefGoogle Scholar
  34. Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.CrossRefGoogle Scholar
  35. Pedersen, J., Isozaki, T., & Hirano, T. (2017). Model science teacher preparation programs. Charlotte, NC: Information Age Publishing.Google Scholar
  36. Riese, J., & Reinhold, P. (2010). Empirische Erkenntnisse zur Struktur professioneller Handlungskompetenz von angehenden Physiklehrkräfte. Zeitschrift für Didaktik der Naturwissenschaften, 16, 167–187.Google Scholar
  37. Rollnick, M. (2017). Learning about semi conductors for teaching—The role played by content knowledge in pedagogical content knowledge (PCK) development. Research in Science Teaching, 47, 833–868.Google Scholar
  38. Rumelhart, D. (1980). Schemata: The building blocks of cognition. In R. Spiro, B. Bruce, & W. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 33–58). Hillsdale, NJ: Erlbaum.Google Scholar
  39. Sadler, P. M., & Tai, R. H. (2001). Success in introductory college physics: The role of high school preparation. Science Education, 85(2), 111–136.CrossRefGoogle Scholar
  40. Schank, R., & Abelson, R. (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Erlbaum.Google Scholar
  41. Schnotz, W. (1994). Aufbau von Wissensstrukturen: Untersuchungen zur Kohärenzbildung beim Wissenserwerb mit Texten [Development of knowledge structures: Studies on the formation of coherence in knowledge acquisition with texts]. Weinheim: Beltz.Google Scholar
  42. Schwarzer, R., & Jerusalem, M. (1999). Skalen zur Erfassung von Lehrer- und Schülermerkmalen: Dokumentation der psychometrischen Verfahren im Rahmen der wissenschaftlichen Begleitung des Modellversuchs Selbstwirksame Schulen. Berlin: Freie Universität Berlin.Google Scholar
  43. Seidel, T., Prenzel, M., Duit, R., & Lehrke, M. (2006). Technischer Bericht zur Videostudie “Lehr-Lern-Prozesse im Physikunterricht” [Technical report of the IPN video study]. Kiel: IPN.Google Scholar
  44. Seidel, T., Rimmele, R., & Prenzel, M. (2005). Clarity and coherence of lesson goals as a scaffold for student learning. Learning and Instruction, 15, 539–556.  https://doi.org/10.1016/j.learninstruc.2005.08.004.CrossRefGoogle Scholar
  45. Shavelson, R. J. (1986). Toma de decision interactiva: Algunas reflexiones sobre los procesos cognoscitivos de los profesores [Interactive decision making: Some thoughts on teacher cognition]. In L. M. V. Angulo (Ed.), Pensiamentos de los profesores y toma de decisiones (pp. 164–184). Servicio de Publicaciones.Google Scholar
  46. Shavelson, R. J., & Stern, P. (1981). Research on teachers’ pedagogical thoughts, judgments, decisions, and behaviour. Review of Educational Research, 51(4), 455–498.  https://doi.org/10.3102/00346543051004455.CrossRefGoogle Scholar
  47. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  48. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–23.  https://doi.org/10.17763/haer.57.1.j463w79r56455411.CrossRefGoogle Scholar
  49. Sorge, S., Keller, M. M., Neumann, K., & Möller, J. (2018). Investigating the relationship between pre-service physics teachers’ professional knowledge, self-concept and interest (Manuscript submitted for publication).Google Scholar
  50. Sorge, S., Kröger, J., Petersen, S., & Neumann, K. (2017). Structure and development of pre-service physics teachers’ professional knowledge. International Journal of Science Education. Online first  https://doi.org/10.1080/09500693.2017.1346326.
  51. Stender, A., Brückmann, M., & Neumann, K. (2017). Transformation of topic-specific professional knowledge into personal pedagogical content knowledge through lesson planning. International Journal of Science Education, 39(12), 1690–1714.  https://doi.org/10.1080/09500693.2017.1351645.CrossRefGoogle Scholar
  52. van Driel, J. H., de Jong, O., & Verloop, N. (2002). The development of preservice chemistry teachers’ PCK. Science Education, 86(4), 572–590.CrossRefGoogle Scholar
  53. Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Göttingen: Hogrefe & Huber.Google Scholar
  54. Woolfolk-Hoy, A., Davis, H., & Pape, S. (2006). Teachers’ knowledge, beliefs, and thinking. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 715–737). Mahwah, USA: Erlbaum.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Leibniz Institute for Science and Mathematics EducationKiel UniversityKielGermany
  2. 2.Department of Physics EducationUniversity Duisburg-EssenDuisburgGermany

Personalised recommendations