Advertisement

Microbial Remediation of Crude Oil-Contaminated Sites

  • Babita Kumari
  • Kriti
  • Gayatri Singh
  • Geetgovind Sinam
  • D. P. Singh
Chapter

Abstract

Sustainable development becomes a need for economic growth of any country that allows the use of natural resources with minimum damage to our environment. The same is applied for the use of crude oil. The demand for crude oil can’t be denied as it is a major source of energy (production of electricity, cooking gas, and facilitating transportation) and raw materials for various petroleum products like solvents, fertilizers, plastics, paints, pesticides, etc. Development of remediation technology to remediate petroleum hydrocarbon-contaminated sites due to crude oil spillage during its transportation becomes essential as it contains various hazardous, toxic, and carcinogenic compounds. Compared to physical and chemical processes of remediation, bioremediation is a highly efficient and self-propelling economic process. This review article presented a brief discussion on development of bioremediation of petroleum hydrocarbon in soil or in water. This article especially emphasizes the inherent characteristics of microbes that facilitate the bioremediation and the use of different biostimulants for fastest remediation of petroleum hydrocarbon-contaminated sites.

Keywords

Crude oil Bioremediation Biostimulants Cell inherent characteristics Biosurfactants Enzymes 

Notes

Acknowledgement

Author is thankful to CSIR-NBRI and Babasaheb Bhimrao Ambedkar University, Lucknow, for providing a place and opportunity to work on biodegradation of crude oil. Author also acknowledges the trainees working for their dissertation work with us.

References

  1. Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefGoogle Scholar
  2. Abdel-Megeed A (2004) Psychrophilic degradation of long chain alkanes. http://faculty.ksu.edu.sa/75164/ph%20d%20thesis/thesis.pdf. pp 158
  3. Alexander M (1994) Biodegradation and bioremediation. Academic Press, San DiegoGoogle Scholar
  4. Alvarez PJJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57(10):2981–2985Google Scholar
  5. Andreas KA, Ekelund NGA (2005) Effects on motile factors and cell growth of Euglena gracilis after exposure to wood ash solution; assessment of toxicity, nutrient availability and pH-dependency. Water Air Soil Pollut 162:353–368CrossRefGoogle Scholar
  6. Barnabas J, Saha S, Singh V, Das S (2013) Effect of enzyme extracts on bacterial degradation of garage petroleum oils. J Environ Sci Comp Sci Eng Technol 2(2):206–211Google Scholar
  7. Bautista LF, Sanz R, Molina MC, González N, Sánchez D (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeterior Biodegrad 63:913–922CrossRefGoogle Scholar
  8. Bogusławska-Was E, Dąbrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203(5–6):451–458CrossRefGoogle Scholar
  9. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67CrossRefGoogle Scholar
  10. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228CrossRefGoogle Scholar
  11. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  12. Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338CrossRefGoogle Scholar
  13. Cernigilia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34:363Google Scholar
  14. Chaillan F, Le Fleche A, Bury E, Phantavonga Y, Grimont P, Saliotc A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595CrossRefGoogle Scholar
  15. Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953Google Scholar
  16. Chandran P, Das N (2012) Role of plasmid in diesel oil degradation by yeast species isolated from petroleum hydrocarbon-contaminated soil. Environ Technol 33(6):645–652CrossRefGoogle Scholar
  17. Chromo M, Sharifi HS, Motamedi H (2010) Bioremediation of a crude oil –polluted soil by applying of fertilizers. Iran J Env Health Sci Eng 7(4):319–326Google Scholar
  18. Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385CrossRefGoogle Scholar
  19. Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448CrossRefGoogle Scholar
  20. Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42(4):499–504CrossRefGoogle Scholar
  21. de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320CrossRefGoogle Scholar
  22. Delille D, Coulon F, Pelletier E (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70CrossRefGoogle Scholar
  23. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  24. Dufrêne YF, Rouxhet PG (1996) Surface composition, surface properties, and adhesiveness of Azospirillum brasilense- Variation during growth. Can J Microbiol 42:548–556CrossRefGoogle Scholar
  25. EIA (2006) World Oil consumption by region. http://www.eia.gov/forecasts/ieo/index.cfm
  26. Ercoli E, Galvez J, Calleja C, Calvo V, Cantero J, Videla S, Medaura M C, Dipaola M (2001) Extensive evaluation of aerated accumulation technique for soil treatments. SPE Paper 69445, presented at the SPE Latin American and Caribbean Petroleum Engineering Conf., Buenos Aires, Argentina, 25–28 MarchGoogle Scholar
  27. Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494CrossRefGoogle Scholar
  28. Grimberg SJ, Stringfellow WT, Aitken MD (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62:2387–2392Google Scholar
  29. Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369CrossRefGoogle Scholar
  30. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15CrossRefGoogle Scholar
  31. Hillel D (1980) Soil structure and aggregation. In: Introduction to soil physics. Academic, London, pp 40–52Google Scholar
  32. Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985–992CrossRefGoogle Scholar
  33. Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:385–396CrossRefGoogle Scholar
  34. Jin S, Fallgren PH (2007) Site-specific limitations of using urea as nitrogen source in biodegradation of petroleum wastes. Soil Sediment Contam 16(5):497–505CrossRefGoogle Scholar
  35. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganism and genetically engineered microorganism. INTECH. http://creativecommon.org/licenses/by/3.0
  36. Jussila MM, Zhao J, Suominen L, Lindström K (2007) TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ Pollut 146(2):510–524CrossRefGoogle Scholar
  37. Kadali KK, Simons KL, Sheppard PJ, Ball AS (2012) Mineralization of weathered crude oil by a hydrocarbon plastic consortium in marine microcosms. Water Air Soil Pollut 223:4283–4295CrossRefGoogle Scholar
  38. Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO (2008) Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: a review. Appl Biochem Microbiol 44:117–135CrossRefGoogle Scholar
  39. Kim IS, Park JS, Kim KW (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using non-ionic surfactants in soil slurry. Appl Geochem 16:1419–1428CrossRefGoogle Scholar
  40. Komnitsas K, Bartzas G, Paspaliaris I (2004) Efficiency of limestone and red mud barriers: laboratory column studies. Miner Eng 17:183–194CrossRefGoogle Scholar
  41. Koolivand A, Naddafi K, Nabizadeh R, Nasseri S, Jafari AJ, Yunesian M, Yaghmaeian K, Nazmara S (2013) Biodegradation of petroleum hydrocarbons of bottom sludge from crude oil storage tanks by in-vessel composting. Toxicol Environ Chem 95(1):101–109CrossRefGoogle Scholar
  42. Kose T, Mukai T, Takimoto K, Okada M (2003) Effect of non-aqueous phaseliquid on biodegradation of PAHs in spilled oil on tidal flat. Water Res 37:1729–1736CrossRefGoogle Scholar
  43. Krishnaswamy M, Subbuchettiar G, Ravi TK, Panchaksharam S (2008) Biosurfactants properties, commercial production and application. Curr Sci 94:736–747Google Scholar
  44. Kumar M, León V, De Sisto Materano A, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057CrossRefGoogle Scholar
  45. Kumar S, Upadhayay SK, Kumari B, Tiwari S, Singh SN, Singh P (2011) In vitro degradation of fluoranthene by bacteria isolated from petroleum sludge. Bioresour Technol 102:3709–3715CrossRefGoogle Scholar
  46. Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47(12):2463–2471CrossRefGoogle Scholar
  47. Kumari B, Singh SN, Singh DP (2016) Induced degradation of crude oil mediated by microbial augmentation and bulking agents. Int J Environ Sci Technol 13(4):1029–1042CrossRefGoogle Scholar
  48. Kuntz J, Nassr-Amellal N, Lollier M, Schmidt JE, Lebeau T (2008) Effect of sludges on bacteria in agricultural soil. Analysis at laboratory and outdoor lysimeter scale. Ecotoxicol Environ Saf 69:277–288CrossRefGoogle Scholar
  49. Laha S, Luthy RG (1992) Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol Bioeng 40:1367–1380CrossRefGoogle Scholar
  50. Lavania M, Cheema S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of asphalt by Garciaellapetrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24CrossRefGoogle Scholar
  51. Lee SE, Seo JS, Keum YS, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7:2059–2069CrossRefGoogle Scholar
  52. Leilei Z, Mingxin H, Suiyi Z (2012) Enzymatic remediation of the polluted crude oil by Rhodococcus. Afr J Microbiol Res 6(7):1540–1547CrossRefGoogle Scholar
  53. Leonardi V, Ssek V, Petruccioli M, Annibale AD, Erbanova P, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeterior Biodegrad 60:165–170CrossRefGoogle Scholar
  54. Lethbridge G, Vits HJJ, Watkinson RJ (1994) Exxon Valdez and bioremediation. Nature 371:97–98CrossRefGoogle Scholar
  55. Li JL, Chen BH (2008) Effect of non-ionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphathovarans. J Hazard Mater 162(1):66–73CrossRefGoogle Scholar
  56. Li XJ, Lin X, Li PJ, Li W, Wang L, Ma F, Chukwuka KS (2009) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 172:601–605CrossRefGoogle Scholar
  57. Liang Y, Gardner DR, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 72:7821–7828CrossRefGoogle Scholar
  58. Liu Z, Edwards DA, Luthy RG (1992) Sorption of non-ionic surfactant onto soil. Water Res 26:1337–1345CrossRefGoogle Scholar
  59. Liu Y, Zhu L, Shen X (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol 35:840–844CrossRefGoogle Scholar
  60. Liu S, Guo C, Liang X, Wu F, Dang Z (2016) Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 129:210–218CrossRefGoogle Scholar
  61. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Brock biology of microorganisms, 12th edn. Benjamin Cummings, San FranciscoGoogle Scholar
  62. Mahmound A, Aziza Y, Abdeltif A, Rachida M (2008) Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J Ind Microbiol Biotechnol 35:1303–1306CrossRefGoogle Scholar
  63. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345CrossRefGoogle Scholar
  64. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380CrossRefGoogle Scholar
  65. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747Google Scholar
  66. Nakles D, Ray L (2002) Overview of Bioremediation Research of University of Texas and Gas Research Institute. Presentation at DOE/PERF Bioremediation Workshop. May 30Google Scholar
  67. Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84(6):802–807CrossRefGoogle Scholar
  68. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341CrossRefGoogle Scholar
  69. Noha H, Nguyen T, Sabatini A (2007) Basis for biosurfactant mixtures to achieve ultra low interfacial tension values against hydrocarbons. J Ind Microbiol Biotechnol 34:497–507CrossRefGoogle Scholar
  70. Noudeh GD, Noodeh AD, Moshafi MH, Behravan E, Afzadi MA, Sodagar M (2010) Investigation of cellular hydrophobicity and surface activity effects of biosynthesed biosurfactant from broth media of PTCC 1561. Afr J Microbiol Res 4(17):1814–1822Google Scholar
  71. Nyer EK, Payne F, Suthersan S (2002) Environment vs. bacteria or let’s play ‘name that bacteria. Ground Water Monit Remediat 23:36–45CrossRefGoogle Scholar
  72. Prakash B, Irfan M (2011) Pseudomonas aeruginosa is present in crude oil contaminated sites of Barmer region (India). J Bioremed Biodegrad 2:129CrossRefGoogle Scholar
  73. Prince R (2002) Bioremediation effectiveness: removing hydrocarbons while minimizing environmental impact. ExxonMobil Research and Engineering. Hand-out at DOE/PERF Bioremediation Workshop. May 30Google Scholar
  74. Resnick SM, Torok DS, Lee K, Brand JM, Gibson DT (1994) Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase. Appl Environ Microbiol 60:3323–3328Google Scholar
  75. Ripp S, Nivens DE, Ahn Y, Werner C, Jarrel J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853CrossRefGoogle Scholar
  76. Robinson C, Barry DA, McCarty PL, Gerhard JI, Kouznetsova I (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407:4560–4573CrossRefGoogle Scholar
  77. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefGoogle Scholar
  78. Salminen JM, Tuomi PM, Suortti AM, Jorgensen KS (2004) Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15(1):29–39CrossRefGoogle Scholar
  79. Sampath R, Venkatakrishnan H, Ravichandran V, Chaudhury RR (2012) Biochemistry of TBT degrading marine Pseudomonas isolated from Indian coastal water. Water Air Soil Pollut 223:99–106CrossRefGoogle Scholar
  80. Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shere AM, Chopade BA (2010) Molecular genetics of biosurfactant synthesis in microorganism. In: Sen R (ed) Biosurfactants. Landes Bioscience and Springer Science+Business Media, New York, pp 14–41CrossRefGoogle Scholar
  81. Sayler GS, Rip S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289CrossRefGoogle Scholar
  82. Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  83. Sutherland JB (1992) Detoxification of polycyclic hydrocarbons by fungi. J Ind Microbiol 9:53–62CrossRefGoogle Scholar
  84. Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365Google Scholar
  85. Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iran. J Environ Health Sci Eng 2(1):6–12Google Scholar
  86. Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915CrossRefGoogle Scholar
  87. Trasar-Cepeda C, Gil-Sotres F, Leiro’s MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319CrossRefGoogle Scholar
  88. Valentin L, Lu-Chau TA, Lopez C, Feijoo G, Moreira MT, Lerna JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene, and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648CrossRefGoogle Scholar
  89. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21CrossRefGoogle Scholar
  90. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440CrossRefGoogle Scholar
  91. van Beilen JB, Marin MM, Smits TH, Rothlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273CrossRefGoogle Scholar
  92. van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549CrossRefGoogle Scholar
  93. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219CrossRefGoogle Scholar
  94. Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975) Petroleum-degrading achlorophyllous alga Protothecazopfi. Nature (London) 254:423–424CrossRefGoogle Scholar
  95. Ward OP (2010) Microbial biosurfactants and biodegradation. Adv Exp Med Biol (Sen R) 672:65–74. Biosurfactants book seriesCrossRefGoogle Scholar
  96. Wasilkowski D, Swedziol Z, Mrozik A (2012) The applicability of genetically modified microorganism in bioremediation of contaminated environments. Chemik 66(8):817–826Google Scholar
  97. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of longchain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221CrossRefGoogle Scholar
  98. Wiehe IA, Kennedy RJ (2000) The oil compatibility model and crude oil incompatibility. Energy Fuel 14(1):56–59CrossRefGoogle Scholar
  99. Willumsen PA (2001) Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol 56:539–544CrossRefGoogle Scholar
  100. Yates GT, Smotzer T (2007) On the lag phase and initial decline of microbial growth curves. J Theor Biol 244:511–517CrossRefGoogle Scholar
  101. Yateem A, Balba M, Al-Awadhi N, El-Nawawy A (1997) White rot fungi and their role in remediating oil-contaminated soil. Environ Int 24:181–187CrossRefGoogle Scholar
  102. Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41:1463–1468CrossRefGoogle Scholar
  103. Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247CrossRefGoogle Scholar
  104. Zhong H, Zeng GM, Liu JX (2008) Adsorption of mono rhamnolipid and di rhamnolipid on two strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 79:671–677CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Babita Kumari
    • 1
  • Kriti
    • 1
  • Gayatri Singh
    • 1
  • Geetgovind Sinam
    • 1
  • D. P. Singh
    • 2
  1. 1.Plant Ecology & Climate Change DivisionCSIR-National Botanical Research InstituteLucknowIndia
  2. 2.Environmental Science DepartmentBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations