Advertisement

Molecular Diagnostics in Breast Cancer

  • Rajeshwari Sinha
  • Sanghamitra PatiEmail author
Chapter

Abstract

Diagnosis and treatment of breast cancer, the most prevalent cancer among women, has come a long way, transitioning from clinical and pathological approaches into the new omics era. With available standard and traditional breast cancer screening and diagnostic methods are associated with own set of limitations, the need to develop new biomarkers or molecular diagnostics becomes more pertinent. Currently available biomarkers and diagnostics tools have enabled breast cancer diagnosis undergo a paradigm shift. These have been successful not only because of their prognostic and predictive value but also because it has enabled simplified and early breast cancer detection, along with accurate and tailored treatment. The present chapter focuses on how current molecular tools and technologies have revolutionized existing traditional screening and diagnosis methods for breast cancer. Additionally, the growing significance of using newer ‘omics’ approaches, such as proteomics in biomarker discovery for breast cancer holds tremendous promise and has also been discussed.

References

  1. 1.
    O’Connor CM, Adams JU. Essentials of cell biology. 2010. https://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010/122997842. Accessed 2 Jan 2018.
  2. 2.
    World Health Organization. Cancer Factsheet. 2018. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 2 Jan 2018.
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.PubMedGoogle Scholar
  4. 4.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedGoogle Scholar
  5. 5.
    McPherson K, Steel C, Dixon JM. Breast cancer—epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    World Health Organization-International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 2 Jan 2018.
  7. 7.
    World Health Organization. Breast cancer. n.d. http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 2 Jan 2018.
  8. 8.
    World Health Organization. Breast cancer: prevention and control. n.d. http://www.who.int/cancer/detection/breastcancer/en/. Accessed 2 Jan 2018.
  9. 9.
  10. 10.
    Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women. Asia Pac J Clin Oncol. 2017;13(4):289–95.PubMedGoogle Scholar
  11. 11.
    World Health Organization. Guide to cancer early diagnosis. 2017. http://apps.who.int/iris/bitstream/10665/254500/1/9789241511940-eng.pdf?ua=1. Accessed 2 Jan 2018.
  12. 12.
    Unger-Saldaña K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol. 2014;5(3):465–77.PubMedPubMedCentralGoogle Scholar
  13. 13.
    da Costa Vieira RA, Biller G, Uemura G, Ruiz CA, Curado MP. Breast cancer screening in developing countries. Clinics. 2017;72(4):244–53.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Amoran OE, Toyobo OO. Predictors of breast self-examination as cancer prevention practice among women of reproductive age-group in a rural town in Nigeria. Niger Med J. 2015;56(3):185–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hossain MS, Ferdous S, Karim-Kos HE. Breast cancer in South Asia: a Bangladeshi perspective. Cancer Epidemiol. 2014;38(5):465–70.PubMedGoogle Scholar
  16. 16.
    Madhu B, Shankar P. Awareness and screening behaviors of breast cancer among urban women in Mysuru, India-need for breast health education program. Int J Commun Med Publ Health. 2017;4(8):2967–72.Google Scholar
  17. 17.
    Arslan AA, Formenti SC. Mammography in developing countries: the risks associated with globalizing the experiences of the Western world. Nat Rev Clin Oncol. 2009;6(3):136–7.Google Scholar
  18. 18.
    Breast Cancer in Developing Countries. Lancet. 2009;374(9701):1567–2131.Google Scholar
  19. 19.
    Rizwan MM, Saadullah M. Lack of awareness about breast cancer and its screening in developing countries. Indian J Cancer. 2009;46(3):252–3.PubMedGoogle Scholar
  20. 20.
    Shtern F. Digital mammography and related technologies: a perspective from the National Cancer Institute. Radiology. 1992;183(3):629–30.PubMedGoogle Scholar
  21. 21.
    Drukteinis JS, Mooney BP, Flowers CI, Gatenby RA. Beyond mammography: new frontiers in breast cancer screening. Am J Med. 2013;126(6):472–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.PubMedGoogle Scholar
  23. 23.
    Vercher-Conejero JL, Pelegrí-Martinez L, Lopez-Aznar D, Cózar-Santiago MD. Positron emission tomography in breast cancer. Diagnostics. 2015;5(1):61–83.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Tatsumi M, Cohade C, Mourtzikos KA, Fishman EK, Wahl RL. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging. 2006;33(3):254–62.PubMedGoogle Scholar
  25. 25.
    Evangelista L, Rita Cervino A. Nuclear imaging and early breast cancer detection. Curr Radiopharm. 2014;7(1):29–35.PubMedGoogle Scholar
  26. 26.
    Simanek M, Koranda P. SPECT/CT imaging in breast cancer-current status and challenges. Biomed Papers. 2016;160(4):474–83.Google Scholar
  27. 27.
    Sun Y, Wei W, Yang HW, Liu JL. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(3):450–63.PubMedGoogle Scholar
  28. 28.
    Rechtman LR, Lenihan MJ, Lieberman JH, Teal CB, Torrente J, Rapelyea JA, Brem RF. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. Am J Roentgenol. 2014;202(2):293–8.Google Scholar
  29. 29.
    Skaane P. Breast cancer screening with digital breast tomosynthesis. Breast Cancer. 2017;24(1):32–41.PubMedGoogle Scholar
  30. 30.
    Schwab M, editor. Encyclopedia of cancer. Berlin: Springer Science & Business Media; 2008.Google Scholar
  31. 31.
    De Abreu FB, Wells WA, Tsongalis GJ. The emerging role of the molecular diagnostics laboratory in breast cancer personalized medicine. Am J Pathol. 2013;183(4):1075–83.PubMedGoogle Scholar
  32. 32.
    Hagemann IS. Molecular testing in breast cancer: a guide to current practices. Arch Pathol Lab Med. 2016;140(8):815–24.PubMedGoogle Scholar
  33. 33.
    Zoon CK, Starker EQ, Wilson AM, Emmert-Buck MR, Libutti SK, Tangrea MA. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev Mol Diagn. 2009;9(5):455–66.PubMedPubMedCentralGoogle Scholar
  34. 34.
    von Wahlde MK, Kurita T, Sanft T, Hofstatter E, Pusztai L. Clinical utility of emerging molecular diagnostics in breast cancer. Am J Hematol Oncol. 2016;12(2). http://www.gotoper.com/publications/ajho/2016/2016Feb/Clinical-Utility-of-Emerging-Molecular-Diagnostics-in-Breast-Cancer. Accessed 21 Jan 2018.
  35. 35.
    Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284–98.PubMedGoogle Scholar
  36. 36.
    Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, Beitsch P, Khan A, Euhus D, Osborne C, Frenkel E. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A. 2004;101(25):9393–8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yardley DA, Kaufman PA, Huang W, Krekow L, Savin M, Lawler WE, Zrada S, Starr A, Einhorn H, Schwartzberg LS, Adams JW. Quantitative measurement of HER2 expression in breast cancers: comparison with ‘real-world’ routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival. Breast Cancer Res. 2015;17(1):41.  https://doi.org/10.1186/s13058-015-0543-x.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Soliman NA, Yussif SM. Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med. 2016;13(4):496–504.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11(2):174–83.PubMedGoogle Scholar
  40. 40.
    Cronin M, Sangli C, Liu ML. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem. 2007;53(6):1084–91.PubMedGoogle Scholar
  41. 41.
    Peethambaram PP, Hoskin TL, Day CN, Goetz MP, Habermann EB, Boughey JC. Use of 21-gene recurrence score assay to individualize adjuvant chemotherapy recommendations in ER+/HER2− node positive breast cancer—A National Cancer Database study. NPJ Breast Cancer. 2017;3(1):41.  https://doi.org/10.1038/s41523-017-0044-4.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5(6):607–16.PubMedGoogle Scholar
  43. 43.
    Jansen MP, Sieuwerts AM, Look MP, et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol. 2007;25(6):662–8.PubMedGoogle Scholar
  44. 44.
    Ma XJ, Salunga R, Dahiya S, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res. 2008;14(9):2601–8.PubMedGoogle Scholar
  45. 45.
    Hequet D, Callens C, Gentien D, Albaud B, Mouret-Reynier MA, Dubot C, Cottu P, Huchon C, Zilberman S, Berseneff H, Foa C. Prospective, multicenter French study evaluating the clinical impact of the Breast Cancer Intrinsic Subtype-Prosigna® Test in the management of early-stage breast cancers. PLoS One. 2017;12(10):e0185753.  https://doi.org/10.1371/journal.pone.0185753.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Lænkholm AV, Jensen MB, Eriksen JO, Rasmussen BB, Knoop AS, Buckingham W, Ferree S, Schaper C, Nielsen TO, Haffner T, Kibøl T. PAM50 risk of recurrence score predicts 10-year distant recurrence in a comprehensive Danish cohort of postmenopausal women allocated to 5 years of endocrine therapy for hormone receptor–positive early breast cancer. J Clin Oncol. 2018;  https://doi.org/10.1200/JCO.2017.74.6586.
  47. 47.
    Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P, Krappmann K, Scheer M, Petry C, Cuzick J, Dowsett M. Comparison of EndoPredict and EPclin with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst. 2016;108(11)  https://doi.org/10.1093/jnci/djw149.
  48. 48.
    Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428.  https://doi.org/10.1186/s13058-014-0428-4.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Desmedt C, Voet T, Sotiriou C, Campbell PJ. Next generation sequencing in breast cancer: First take home messages. Curr Opin Oncol. 2012;24(6):597.  https://doi.org/10.1097/CCO.0b013e328359554e.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 2015;172:34–49.Google Scholar
  51. 51.
    Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122.  https://doi.org/10.7150/thno.11543.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Saadeh Y, Leung T, Vyas A, Chaturvedi LS, Perumal O, Vyas D. Applications of nanomedicine in breast cancer detection, imaging, and therapy. J Nanosci Nanotechnol. 2014;14(1):913–23.PubMedGoogle Scholar
  53. 53.
    Sharma A, Jain N, Sareen R. Nanocarriers for diagnosis and targeting of breast cancer. Biomed Res Int. 2013;2013:960821.  https://doi.org/10.1155/2013/960821.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Singh AK, Pandey A, Tewari M, Kumar R, Sharma A, Pandey HP, Shukla HS. Prospects of nano–material in breast cancer management. Pathol Oncol Res. 2013;19(2):155–65.PubMedGoogle Scholar
  55. 55.
    Baskin Y, Yigitbasi T. Clinical proteomics of breast cancer. Curr Genomics. 2012;11(7):528–36.Google Scholar
  56. 56.
    Bertucci F, Birnbaum D, Goncalves A. Proteomics of breast cancer principles and potential clinical applications. Mol Cell Proteomics. 2006;5(10):1772–86.PubMedGoogle Scholar
  57. 57.
    Gast MC, Schellens JH, Beijnen JH. Clinical proteomics in breast cancer: a review. Breast Cancer Res Treat. 2009;116(1):17–29.PubMedGoogle Scholar
  58. 58.
    Qin XJ, Ling BX. Proteomic studies in breast cancer. Oncol Lett. 2012;3(4):735–43.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. Sci World J. 2014;2014  https://doi.org/10.1155/2014/260348.
  60. 60.
    Wang DL, Xiao C, Fu G, Wang X, Li L. Identification of potential serum biomarkers for breast cancer using a functional proteomics technology. Biomark Res. 2017;5(1):11.  https://doi.org/10.1186/s40364-017-0092-9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lourenco AP, Benson KL, Henderson MC, Silver M, Letsios E, Tran Q, Gordon KJ, Borman S, Corn C, Mulpuri R, Smith W. A noninvasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years. Clin Breast Cancer. 2017;17(7):516–25.PubMedGoogle Scholar
  62. 62.
    Porto-Mascarenhas EC, Assad DX, Chardin H, Gozal D, Canto GD, Acevedo AC, Guerra EN. Salivary biomarkers in the diagnosis of breast cancer: a review. Crit Rev Oncol Hematol. 2017;110:62–73.PubMedGoogle Scholar
  63. 63.
    Shaheed SU, Tait C, Kyriacou K, Linforth R, Salhab M, Sutton C. Evaluation of nipple aspirate fluid as a diagnostic tool for early detection of breast cancer. Clin Proteomics. 2018;15(1):3.  https://doi.org/10.1186/s12014-017-9179-4.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Beretov J, Wasinger VC, Millar EK, Schwartz P, Graham PH, Li Y. Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach. PLoS One. 2015;10(11):e0141876.  https://doi.org/10.1371/journal.pone.0141876.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lebrecht A, Boehm D, Schmidt M, Koelbl H, Schwirz RL, Grus FH. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics. 2009;6(3):177–82.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Independent ResearcherNew DelhiIndia
  2. 2.ICMR-Regional Medical Research CentreDepartment of Health Research, Govt. of IndiaBhubaneswarIndia

Personalised recommendations