Predicting E3 Ubiquitin Ligases as Possible Promising Biomarkers for Brain Tumors

  • Vibhuti Joshi
  • Arun Upadhyay
  • Ayeman Amanullah
  • Ribhav Mishra
  • Amit MishraEmail author


Cells perform several post-translational changes in various proteins prior to allow their participation in various intracellular metabolic mechanisms. Ubiquitylation is also a post-translational process for different cellular proteins after which modified proteins contribute their physiological functions in distinct cellular processes. E3 ubiquitin ligases are important components of ubiquitin proteasome system (UPS), which specifically recognize critical substrate proteins (abnormal, over-accumulated & old) for their intracellular elimination. Loss of cell cycle regulation is one of the chief possible causes of deregulated cellular proliferation and cancer progression. How different E3 ubiquitin ligases play essential roles in cell-cycle regulation is still one of the unsolved fundamental questions and potentially stands for the development of early diagnostic methods, which can generate new molecular strategies to treat cancer. In this chapter, our main focus is to understand the functions of E3 Ubiquitin Ligases as setting potential biomarker or targets in various cancers and linked with regulatory roles of cell-cycle transitions. The chief objective of this current chapter is to understand the critical requirement of new biomarkers, which can early indicate improper cellular proliferation and cancer progression due to the complex defects in various signal transduction mechanisms linked with the promotion and progress of each phase of the cell cycle. A better understanding of E3 ubiquitin ligases may result in new insights and therapeutic strategies for the treatment and suppression of the development of cancer.


E3 ubiquitin ligases Brain tumors Biomarkers Cancer 



Atrophin-1 interacting protein 4


Anaphase promoting complex/cyclosome;


Breast cancer associated protein 2


Bone morphogenic protein


Breast cancer gene 1


Casitas B- lineage lymphoma


Cell division control protein 4


Carboxy terminus of Hsp70-interacting protein


Cullin-RING ubiquitin ligases


E6-associated protein


Gas chromatography


Glycoprotein 78


Hepatocellular carcinoma


Homologous to E6-associated protein C-terminus


Human papilloma virus


Inhibitors of apoptosis protein




Kirsten rat sarcoma viral oncogene homolog


Large tumor suppressor kinase 1


Light chain 3


Matrix assisted laser desorption/ionization


Mouse double minute 2


Macrophage inhibitory cytokine-1


Neoadjuvant chemotherapy


Neural precursor cell expressed developmentally downregulated 4


Protein elution plate


Plant homeodomain


Protein quality control


Protein tyrosine kinase




Really interesting new gene


Reverse transcriptase-polymerase chain reaction


Skp1, Cullins and F-box complex


Seven in absentia homolog 2


S-Mothers against decapentaplegic homolog 4

Smurf 1/2

Smad ubiquitin regulatory factors


Transforming growth factor-β


Tumor necrosis factor-α


Tripartite motif containing 2


Tripartite motif containing 25


Ubiquitin conjugating enzyme 2C


Unc-51 like autophagy activating kinase 1


Ubiquitin proteasome system


X-chromosome-linked IAP



In this work, VJ and AU were supported by a research fellowship from University Grants Commission, Council for Scientific and Industrial Research, Government of India. The authors would like to thank Mr. Bharat Pareek for his technical assistance and entire lab management during the manuscript preparation. We apologize to various authors whose work could not be included due to space limitations.

Conflict of interest: The authors do not have any actual or potential conflicts of interests to disclose.


  1. 1.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;1:1–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Meyskens FL Jr, Mukhtar H, Rock CL, Cuzick J, Kensler TW, et al. Cancer prevention: obstacles, challenges and the road ahead. J Natl Cancer Inst. 2016;108.Google Scholar
  5. 5.
    Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1:293–7.Google Scholar
  6. 6.
    Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9:123–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Drake CG. Combination immunotherapy approaches. Ann Oncol. 2012;23:viii41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dang CV, Reddy EP, Shokat KM, Soucek L. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 2017;17(8):502–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hedigan K. Cancer: herbal medicine reduces chemotherapy toxicity. Nat Rev Drug Discov. 2010;9:765.PubMedCrossRefGoogle Scholar
  10. 10.
    Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6:140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Liotta LA, Petricoin E. Cancer biomarkers: closer to delivering on their promise. Cancer Cell. 2011;20:279–80.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chhangani D, Mishra A. Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol. 2013;48:141–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005;23:4776–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, et al. E3 ubiquitin ligases neurobiological mechanisms: development to degeneration. Front Mol Neurosci. 2017;10:151.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene. 2014;33:4709–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Vlachostergios PJ, Voutsadakis IA, Papandreou CN. The ubiquitin-proteasome system in glioma cell cycle control. Cell Div. 2012;7:18.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Vriend J, Ghavami S, Marzban H. The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain. 2015;8:64.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kaza N, Kohli L, Roth KA. Autophagy in brain tumors: a new target for therapeutic intervention. Brain Pathol. 2012;22:89–98.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–22.PubMedGoogle Scholar
  21. 21.
    McAfee Q, Zhang Z, Samanta A, Levi SM, Ma X-H, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci. 2012;109:8253–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Yuan N, Song L, Zhang S, Lin W, Cao Y, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015;100:345–56.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell. 2004;5:417–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 2006;8:645–54.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.PubMedCrossRefGoogle Scholar
  27. 27.
    Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M, Group CRAc. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366:1784–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Gelmon KA, Eisenhauer EA, Harris AL, Ratain MJ, Workman P. Anticancer agents targeting signaling molecules and cancer cell environment: challenges for drug development? J Natl Cancer Inst. 1999;91:1281–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Hait WN. Anticancer drug development: the grand challenges. Nat Rev Drug Discov. 2010;9:253–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Hollingsworth SJ, Biankin AV. The challenges of precision oncology drug development and implementation. Public Health Genomics. 2015;18:338–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Bhatt AN, Mathur R, Farooque A, Verma A, Dwarakanath BS. Cancer biomarkers—current perspectives. Indian J Med Res. 2010;132:129–49.PubMedGoogle Scholar
  33. 33.
    Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, et al. Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci. 2004;95:784–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Rusling JF, Kumar CV, Gutkind JS, Patel V. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 2010;135:2496–511.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Sell S, Wahren B. Human cancer markers. Berlin: Springer Science & Business Media; 2012.Google Scholar
  37. 37.
    Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52.PubMedCrossRefGoogle Scholar
  38. 38.
    Sorio C, Mauri P, Pederzoli P, Scarpa A. Non-invasive cancer detection: strategies for the identification of novel cancer markers. IUBMB Life. 2006;58:193–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Gonzalez de Castro D, Clarke PA, Al-Lazikani B, Workman P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther. 2013;93:252–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ulaner GA, Riedl CC, Dickler MN, Jhaveri K, Pandit-Taskar N, Weber W. Molecular imaging of biomarkers in breast cancer. J Nucl Med. 2016;57(Suppl 1):53S–9S.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ballman KV. Biomarker: predictive or Prognostic? J Clin Oncol. 2015;33:3968–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancer. 2010;2:190.CrossRefGoogle Scholar
  43. 43.
    Nalejska E, Maczynska E, Lewandowska MA. Prognostic and predictive biomarkers: tools in personalized oncology. Mol Diagn Ther. 2014;18:273–84.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mehta S, Shelling A, Muthukaruppan A, Lasham A, Blenkiron C, et al. Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol. 2010;2:125–48.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Shaw A, Bradley MD, Elyan S, Kurian KM. Tumour biomarkers: diagnostic, prognostic, and predictive. BMJ. 2015;351:h3449.PubMedCrossRefGoogle Scholar
  46. 46.
    Sarker D, Workman P. Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv Cancer Res. 2007;96:213–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Gainor JF, Longo DL, Chabner BA. Pharmacodynamic biomarkers: falling short of the mark? Clin Cancer Res. 2014;20:2587–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Mizuarai S, Irie H, Kotani H. Gene expression-based pharmacodynamic biomarkers: the beginning of a new era in biomarker-driven anti-tumor drug development. Curr Mol Med. 2010;10:596–607.PubMedGoogle Scholar
  49. 49.
    Mito S, Sakai M, Suzuki M. Pharmacodynamics biomarkers: application and considerations in clinical development. Nihon Yakurigaku Zasshi. 2016;148:302–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5:588–99.PubMedCrossRefGoogle Scholar
  51. 51.
    Sahab ZJ, Semaan SM, Sang QX. Methodology and applications of disease biomarker identification in human serum. Biomark Insights. 2007;2:21–43.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jain KK. Technologies for discovery of biomarkers. In:The handbook of biomarkers. Berlin: Springer; 2010. p. 23–72.CrossRefGoogle Scholar
  53. 53.
    Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol. 2008;26:5630–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452:571.PubMedCrossRefGoogle Scholar
  55. 55.
    Chai JC, Park S, Seo H, Cho SY, Lee YS. Identification of cancer-specific biomarkers by using microarray gene expression profiling. Biochip J. 2013;7:57–62.CrossRefGoogle Scholar
  56. 56.
    Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C-H, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci. 2001;98:15149–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee HJ, Wark AW, Corn RM. Microarray methods for protein biomarker detection. Analyst. 2008;133:975–83.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Perez-Diez A, Morgun A, Shulzhenko N. Microarrays for cancer diagnosis and classification. In: Microarray technology and cancer gene profiling. 2007. p. 74–85.Google Scholar
  59. 59.
    Kang K, Peng X, Luo J, Gou D. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol. 2012;3:4.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Scott A, Ambannavar R, Jeong J, Liu ML, Cronin MT. RT-PCR-based gene expression profiling for cancer biomarker discovery from fixed, paraffin-embedded tissues. Methods Mol Biol. 2011;724:239–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24:971–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang Q, Chaerkady R, Wu J, Hwang HJ, Papadopoulos N, et al. Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci. 2011;108:2444–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Issaq HJ, Veenstra TD. The role of electrophoresis in disease biomarker discovery. Electrophoresis. 2007;28:1980–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003;3:267.PubMedCrossRefGoogle Scholar
  65. 65.
    Wong SC, Chan CM, Ma BB, Lam MY, Choi GC, et al. Advanced proteomic technologies for cancer biomarker discovery. Expert Rev Proteomics. 2009;6:123–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Jain KK. Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther. 2007;9:563–71.PubMedGoogle Scholar
  67. 67.
    Dunstan RW, Keith A, Wharton J, Quigley C, Lowe A. The use of immunohistochemistry for biomarker assessment—can it compete with other technologies? Toxicol Pathol. 2011;39:988–1002.PubMedCrossRefGoogle Scholar
  68. 68.
    Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights. 2010;5:9–20.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics. 2016;13:1.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hu L, Ru K, Zhang L, Huang Y, Zhu X, et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res. 2014;2:3.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Min L, Shou C. In situ hybridization of breast cancer markers. In: Cao J, editor. Breast cancer: methods and protocols. New York: Springer; 2016. p. 53–9.CrossRefGoogle Scholar
  72. 72.
    Xie G, Lu L, Qiu Y, Ni Q, Zhang W, et al. Plasma metabolite biomarkers for the detection of pancreatic cancer. J Proteome Res. 2015;14:1195–202.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int. 2015;2015:354671.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Sun Z, Chen X, Wang G, Li L, Fu G, et al. Identification of functional metabolic biomarkers from lung cancer patient serum using PEP technology. Biomark Res. 2016b;4:11.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Porro G, Ménard S, Tagliabue E, Orefice S, Salvadori B, et al. Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer. 1988;61:2407–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Reid BJ, Blount PL, Feng Z, Levine DS. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. Am J Gastroenterol. 2000;95:3089–96.PubMedCrossRefGoogle Scholar
  77. 77.
    Stewart CS, Leibovich BC, Weaver AL, Lieber MM. Prostate cancer diagnosis using a saturation needle biopsy technique after previous negative sextant biopsies. J Urol. 2001;166:86–91. Discussion 91–2.PubMedCrossRefGoogle Scholar
  78. 78.
    Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010;4:1–10.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Selvolini G, Marrazza G. MIP-based sensors: promising new tools for cancer biomarker determination. Sensors. 2017;17:E718.PubMedCrossRefGoogle Scholar
  80. 80.
    Wei F, Patel P, Liao W, Chaudhry K, Zhang L, et al. Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res. 2009;15:4446–52.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shoemaker CJ, Green R. Translation drives mRNA quality control. Nat Struct Mol Biol. 2012;19:594–601.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88.PubMedCrossRefGoogle Scholar
  83. 83.
    Maurizi MR. Love it or cleave it: tough choices in protein quality control. Nat Struct Biol. 2002;9:410–2.PubMedCrossRefGoogle Scholar
  84. 84.
    Sandefur CI, Schnell S. Effects of protein quality control machinery on protein homeostasis. In: Dubitzky W, Southgate J, Fuß H, editors. Understanding the dynamics of biological systems: lessons learned from integrative systems biology. New York: Springer; 2011. p. 1–17.Google Scholar
  85. 85.
    Swaminathan S. Protein quality control: knowing when to fold. Nat Cell Biol. 2005;7:647.CrossRefGoogle Scholar
  86. 86.
    Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int J Biochem Cell Biol. 2016;79:403–18.PubMedCrossRefGoogle Scholar
  87. 87.
    Trcka F, Vojtesek B, Muller P. Protein quality control and cancerogenesis. Klin Onkol. 2012;25(Suppl 2):2S38–44.PubMedGoogle Scholar
  88. 88.
    Amaravadi RK. Cancer. Autophagy in tumor immunity. Science. 2011;334:1501–2.PubMedCrossRefGoogle Scholar
  89. 89.
    Chhangani D, Chinchwadkar S, Mishra A. Autophagy coupling interplay: can improve cellular repair and aging? Mol Neurobiol. 2014;49:1270–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Levine B. Cell biology: autophagy and cancer. Nature. 2007;446:745–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112:1809–20.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100:15077–82.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rohatgi RA, Janusis J, Leonard D, Bellve KD, Fogarty KE, et al. Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene. 2015;34:5352–62.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25:795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12:401–10.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yang YP, Hu LF, Zheng HF, Mao CJ, Hu WD, et al. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin. 2013;34:625–35.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Levy JMM, Thompson JC, Griesinger AM, Amani V, Donson AM, et al. Autophagy inhibition improves chemosensitivity in BRAF V600E brain tumors. Cancer Discov. 2014;4:773–80.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mulcahy Levy JM, Zahedi S, Griesinger AM, Morin A, Davies KD, et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. Elife. 2017;6:e19671.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Levy JM, Thorburn A. Modulation of pediatric brain tumor autophagy and chemosensitivity. J Neurooncol. 2012;106:281–90.PubMedCrossRefGoogle Scholar
  101. 101.
    Schmitz KJ, Ademi C, Bertram S, Schmid KW, Baba HA. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol. 2016;14:189.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Chen S, Jiang YZ, Huang L, Zhou RJ, Yu KD, et al. The residual tumor autophagy marker LC3B serves as a prognostic marker in local advanced breast cancer after neoadjuvant chemotherapy. Clin Cancer Res. 2013;19:6853–62.PubMedCrossRefGoogle Scholar
  103. 103.
    Huang C-Y, Huang S-P, Lin VC, Yu C-C, Chang T-Y, et al. Genetic variants of the autophagy pathway as prognostic indicators for prostate cancer. Sci Rep. 2015;5:14045.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Liu B, Miyake H, Nishikawa M, Tei H, Fujisawa M. Expression profile of autophagy-related markers in localized prostate cancer: correlation with biochemical recurrence after radical prostatectomy. Urology. 2015;85:1424–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Kim HM, Kim ES, Koo JS. Expression of autophagy-related proteins in different types of thyroid cancer. Int J Mol Sci. 2017;18:E540.PubMedCrossRefGoogle Scholar
  106. 106.
    Ueno T, Saji S, Sugimoto M, Masuda N, Kuroi K, et al. Clinical significance of the expression of autophagy-associated marker, beclin 1, in breast cancer patients who received neoadjuvant endocrine therapy. BMC Cancer. 2016;16:230.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin- proteasome and autophagy-lysosome systems. FEBS Lett. 2010;584:1393–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Wojcik S. Crosstalk between autophagy and proteasome protein degradation systems: possible implications for cancer therapy. Folia Histochem Cytobiol. 2013;51:249–64.PubMedCrossRefGoogle Scholar
  109. 109.
    Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta. 2014;1843:150–62.PubMedCrossRefGoogle Scholar
  110. 110.
    Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458:438–44.PubMedCrossRefGoogle Scholar
  111. 111.
    Weathington NM, Mallampalli RK. Emerging therapies targeting the ubiquitin proteasome system in cancer. J Clin Invest. 2014;124:6–12.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ciechanover A, Iwai K. The ubiquitin system: from basic mechanisms to the patient bed. IUBMB Life. 2004;56:193–201.PubMedCrossRefGoogle Scholar
  113. 113.
    Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci. 2006;31:137–55.PubMedCrossRefGoogle Scholar
  114. 114.
    Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10:29–46.PubMedCrossRefGoogle Scholar
  115. 115.
    Shen M, Schmitt S, Buac D, Dou QP. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets. 2013;17:1091–108.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Chen L, Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 2005;65:5599–606.PubMedCrossRefGoogle Scholar
  117. 117.
    Chen D, Dou QP. The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr Protein Pept Sci. 2010;11:459–70.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Buac D, Shen M, Schmitt S, Rani Kona F, Deshmukh R, et al. From bortezomib to other inhibitors of the proteasome and beyond. Curr Pharm Des. 2013;19:4025–38.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Xu GW, Ali M, Wood TE, Wong D, Maclean N, et al. The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood. 2010;115:2251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007;67:9472–81.PubMedCrossRefGoogle Scholar
  121. 121.
    Luo Z, Yu G, Lee HW, Li L, Wang L, et al. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res. 2012;72:3360–71.PubMedCrossRefGoogle Scholar
  122. 122.
    Ieta K, Ojima E, Tanaka F, Nakamura Y, Haraguchi N, et al. Identification of overexpressed genes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating enzyme E2C gene expression. Int J Cancer. 2007;121:33–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Hao Z, Zhang H, Cowell J. Ubiquitin-conjugating enzyme UBE2C: molecular biology, role in tumorigenesis, and potential as a biomarker. Tumor Biol. 2012;33:723–30.CrossRefGoogle Scholar
  124. 124.
    Okamoto Y, Ozaki T, Miyazaki K, Aoyama M, Miyazaki M, Nakagawara A. UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res. 2003;63:4167–73.PubMedGoogle Scholar
  125. 125.
    Xie C, Powell C, Yao M, Wu J, Dong Q. Ubiquitin-conjugating enzyme E2C: a potential cancer biomarker. Int J Biochem Cell Biol. 2014;47:113–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Ardley HC, Robinson PA. E3 ubiquitin ligases. Essays Biochem. 2005;41:15–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Bielskienė K, Bagdonienė L, Mozūraitienė J, Kazbarienė B, Janulionis E. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina. 2015;51:1–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget. 2016;7:6521–37.PubMedGoogle Scholar
  129. 129.
    Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci. 2009;100:24–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee JK, Chang N, Yoon Y, Yang H, Cho H, et al. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol. 2016;18:37–47.PubMedCrossRefGoogle Scholar
  131. 131.
    Cheng C, Niu C, Yang Y, Wang Y, Lu M. Expression of HAUSP in gliomas correlates with disease progression and survival of patients. Oncol Rep. 2013;29:1730–6.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Summers MK, Venere M. Targeting the ubiquitin proteasome system in glioblastoma. Transl Cancer Res. 2016;S920–22.Google Scholar
  133. 133.
    Zhang L, Wang H, Tian L, Li H. Expression of USP7 and MARCH7 is correlated with poor prognosis in epithelial ovarian cancer. Tohoku J Exp Med. 2016;239:165–75.PubMedCrossRefGoogle Scholar
  134. 134.
    Chhangani D, Jana NR, Mishra A. Misfolded proteins recognition strategies of E3 ubiquitin ligases and neurodegenerative diseases. Mol Neurobiol. 2013;47:302–12.PubMedCrossRefGoogle Scholar
  135. 135.
    Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: potential therapeutic targets for neurodegeneration and ageing. Ageing Res Rev. 2015;24:138–59.PubMedCrossRefGoogle Scholar
  136. 136.
    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.PubMedCrossRefGoogle Scholar
  137. 137.
    Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Dove KK, Stieglitz B, Duncan ED, Rittinger K, Klevit RE. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. EMBO Rep. 2016;17:1221–35.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Spratt DE, Walden H, Shaw GS. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J. 2014;458:421–37.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cyr DM, Höhfeld J, Patterson C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci. 2002;27:368–75.PubMedCrossRefGoogle Scholar
  141. 141.
    Huibregtse JM, Scheffner M, Beaudenon S, Howley PM. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A. 1995;92:5249.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Morreale FE, Walden H. Types of ubiquitin ligases. Cell. 2016;165(248-48):e1.Google Scholar
  143. 143.
    Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009;10:398–409.PubMedCrossRefGoogle Scholar
  144. 144.
    Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta. 2014;1843:61–74.PubMedCrossRefGoogle Scholar
  145. 145.
    Bernassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell. 2008;14:10–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Melino G, Gallagher E, Aqeilan RI, Knight R, Peschiaroli A, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 2008;15:1103–12.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol. 2008;10:643–53.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Metzger MB, Pruneda JN, Klevit RE, Weissman AM. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta. 2014;1843:47–60.PubMedCrossRefGoogle Scholar
  150. 150.
    Joazeiro CAP, Weissman AM. RING finger proteins. Cell. 2000;102:549–52.PubMedCrossRefGoogle Scholar
  151. 151.
    Chene P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003;3:102–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 2008;14:5318–24.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Dornan D, Bheddah S, Newton K, Ince W, Frantz GD, et al. COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res. 2004;64:7226–30.PubMedCrossRefGoogle Scholar
  154. 154.
    Duan W, Gao L, Druhan LJ, Zhu WG, Morrison C, et al. Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst. 2004;96:1718–21.PubMedCrossRefGoogle Scholar
  155. 155.
    Azmi P, Seth A. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer. 2005;41:2549–60.PubMedCrossRefGoogle Scholar
  156. 156.
    Brahemi G, Kona FR, Fiasella A, Buac D, Soukupová J, et al. Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer. J Med Chem. 2010;53:2757–65.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Burger A, Amemiya Y, Kitching R, Seth AK. Novel RING E3 ubiquitin ligases in breast cancer. Neoplasia. 2006;8:689–95.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem. 2001;276:33111–20.PubMedCrossRefGoogle Scholar
  159. 159.
    Cao Z, Li G, Shao Q, Yang G, Zheng L, et al. CHIP: a new modulator of human malignant disorders. Oncotarget. 2016;7:29864–74.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A decade of boon or burden: what has the CHIP ever done for cellular protein quality control mechanism implicated in neurodegeneration and aging? Front Mol Neurosci. 2016;9:93.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci. 2006;31:35–40.PubMedCrossRefGoogle Scholar
  162. 162.
    Coscoy L, Ganem D. PHD domains and E3 ubiquitin ligases: viruses make the connection. Trends Cell Biol. 2003;13:7–12.PubMedCrossRefGoogle Scholar
  163. 163.
    Coscoy L, Sanchez DJ, Ganem D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol. 2001;155:1265–74.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Hewitt EW, Duncan L, Mufti D, Baker J, Stevenson PG, Lehner PJ. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J. 2002;21:2418–29.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Mansouri M, Bartee E, Gouveia K, Hovey Nerenberg BT, Barrett J, et al. The PHD/LAP-domain protein M153R of myxomavirus is a ubiquitin ligase that induces the rapid internalization and lysosomal destruction of CD4. J Virol. 2003;77:1427–40.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep. 2014;15:142–54.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Varshavsky A. Discovery of cellular regulation by protein degradation. J Biol Chem. 2008;283:34469–89.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997;9:788–99.PubMedCrossRefGoogle Scholar
  169. 169.
    Lu Z, Hunter T. Ubiquitylation and proteasomal degradation of the p21Cip1, p27Kip1 and p57Kip2 CDK inhibitors. Cell Cycle. 2010;9:2342–52.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Craney A, Rape M. Dynamic regulation of ubiquitin-dependent cell cycle control. Curr Opin Cell Biol. 2013;25:704–10.PubMedCrossRefGoogle Scholar
  171. 171.
    Nabi IR, Raz A. Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. Int J Cancer. 1987;40:396–402.PubMedCrossRefGoogle Scholar
  172. 172.
    Chiu CG, St-Pierre P, Nabi IR, Wiseman SM. Autocrine motility factor receptor: a clinical review. Expert Rev Anticancer Ther. 2008;8:207–17.PubMedCrossRefGoogle Scholar
  173. 173.
    Jiang WG, Raz A, Douglas-Jones A, Mansel RE. Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem. 2006;54:231–41.PubMedCrossRefGoogle Scholar
  174. 174.
    Endo K, Shirai A, Furukawa M, Yoshizaki T. Prognostic value of cell motility activation factors in patients with tongue squamous cell carcinoma. Hum Pathol. 2006;37:1111–6.PubMedCrossRefGoogle Scholar
  175. 175.
    Wang W, Yang LY, Yang ZL, Peng JX, Yang JQ. Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma. Dig Dis Sci. 2007a;52:770–5.PubMedCrossRefGoogle Scholar
  176. 176.
    Joshi B, Li L, Nabi IR. A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase. J Biol Chem. 2010;285:8830–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med. 2007;13:1504–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Shang Y, Zhu Z. gp78 is specifically expressed in human prostate cancer rather than normal prostate tissue. J Mol Histol. 2013;44:653–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Tanizaki Y, Sato Y, Oka H, Utsuki S, Kondo K, et al. Expression of autocrine motility factor mRNA is a poor prognostic factor in high-grade astrocytoma. Pathol Int. 2006;56:510–5.PubMedCrossRefGoogle Scholar
  180. 180.
    Jan CI, Yu CC, Hung MC, Harn HJ, Nieh S, et al. Tid1, CHIP and ErbB2 interactions and their prognostic implications for breast cancer patients. J Pathol. 2011;225:424–37.PubMedCrossRefGoogle Scholar
  181. 181.
    Jang KW, Lee KH, Kim SH, Jin T, Choi EY, et al. Ubiquitin ligase CHIP induces TRAF2 proteasomal degradation and NF-κB inactivation to regulate breast cancer cell invasion. J Cell Biochem. 2011;112:3612–20.PubMedCrossRefGoogle Scholar
  182. 182.
    Wen J, Luo KJ, Hu Y, Yang H, Fu JH. Metastatic lymph node CHIP expression is a potential prognostic marker for resected esophageal squamous cell carcinoma patients. Ann Surg Oncol. 2013;20:1668–75.PubMedCrossRefGoogle Scholar
  183. 183.
    Wang S, Wu X, Zhang J, Chen Y, Xu J, et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut. 2013;62:496–508.PubMedCrossRefGoogle Scholar
  184. 184.
    Liang ZL, Kim M, Huang SM, Lee HJ, Kim JM. Expression of carboxyl terminus of Hsp70-interacting protein (CHIP) indicates poor prognosis in human gallbladder carcinoma. Oncol Lett. 2013;5:813–8.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Sun C, Li HL, Shi ML, Liu QH, Bai J, Zheng JN. Diverse roles of C-terminal Hsp70-interacting protein (CHIP) in tumorigenesis. J Cancer Res Clin Oncol. 2014;140:189–97.PubMedCrossRefGoogle Scholar
  186. 186.
    Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 2013;32:1284–95.PubMedCrossRefGoogle Scholar
  187. 187.
    Wu W, Koike A, Takeshita T, Ohta T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div. 2008;3:1.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    James CR, Quinn JE, Mullan PB, Johnston PG, Harkin DP. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist. 2007;12:142–50.PubMedCrossRefGoogle Scholar
  189. 189.
    Quinn JE, James CR, Stewart GE, Mulligan JM, White P, et al. BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res. 2007;13:7413–20.PubMedCrossRefGoogle Scholar
  190. 190.
    McAlpine JN, Porter H, Kobel M, Nelson BH, Prentice LM, et al. BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod Pathol. 2012;25:740–50.PubMedCrossRefGoogle Scholar
  191. 191.
    Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst. 2014;106:dju089.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Hjortkjaer M, Waldstrom M, Jakobsen A, Kanstrup H, Sogaard-Andersen E, Dahl SK. The prognostic value of BRCA1 and PARP expression in epithelial ovarian carcinoma: immunohistochemical detection. Int J Gynecol Pathol. 2017;36:180–9.PubMedGoogle Scholar
  193. 193.
    Thompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94:1358–65.PubMedCrossRefGoogle Scholar
  194. 194.
    Chen C, Sun C, Tang D, Yang G, Zhou X, Wang D. Identification of key genes in glioblastoma-associated stromal cells using bioinformatics analysis. Oncol Lett. 2016;11:3999–4007.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Rasmussen RD, Gajjar MK, Tuckova L, Jensen KE, Maya-Mendoza A, et al. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat Commun. 2016;7:13398.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol. 2005;16:323–33.PubMedCrossRefGoogle Scholar
  197. 197.
    Koh MS, Ittmann M, Kadmon D, Thompson TC, Leach FS. CDC4 gene expression as potential biomarker for targeted therapy in prostate cancer. Cancer Biol Ther. 2006;5:78–83.PubMedCrossRefGoogle Scholar
  198. 198.
    Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T. High expression of S-phase kinase- interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 2001;61:7044–7.PubMedGoogle Scholar
  199. 199.
    Chan CH, Li CF, Yang WL, Gao Y, Lee SW, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149:1098–111.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, et al. Clinical and biological significance of S- phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma. Cancer Res. 2002;62:3819–25.PubMedGoogle Scholar
  201. 201.
    Wei D, Sun Y. Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets. Genes Cancer. 2010;1:700–7.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets. 2011;11:347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics. 2013;40:97–106.PubMedCrossRefGoogle Scholar
  204. 204.
    Lee SH, McCormick F. Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med. 2005;83:296–307.PubMedCrossRefGoogle Scholar
  205. 205.
    Perry WL, Hustad CM, Swing DA, O'Sullivan TN, Jenkins NA, Copeland NG. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet. 1998;18:143–6.CrossRefGoogle Scholar
  206. 206.
    Parravicini V, Field AC, Tomlinson PD, Basson MA, Zamoyska R. Itch-/- alphabeta and gammadelta T cells independently contribute to autoimmunity in Itchy mice. Blood. 2008;111:4273–7282.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Fang D, Elly C, Gao B, Fang N, Altman Y, et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol. 2002;3:281–7.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Chang L, Kamata H, Solinas G, Luo JL, Maeda S, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell. 2006;124:601–13.PubMedCrossRefGoogle Scholar
  209. 209.
    Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, et al. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J. 2005;24:836–48.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, et al. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci U S A. 2006;103:12753–8.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Suryaraja R, Anitha M, Anbarasu K, Kumari G, Mahalingam S. The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis. 2013;4:e565.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Salah Z, Melino G, Aqeilan RI. Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res. 2011;71:2010–20.PubMedCrossRefGoogle Scholar
  213. 213.
    Luo ZL, Luo HJ, Fang C, Cheng L, Huang Z, et al. Negative correlation of ITCH E3 ubiquitin ligase and miRNA-106b dictates metastatic progression in pancreatic cancer. Oncotarget. 2016;7:1477–85.PubMedGoogle Scholar
  214. 214.
    Shearwin-Whyatt L, Dalton HE, Foot N, Kumar S. Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays. 2006;28:617–28.PubMedCrossRefGoogle Scholar
  215. 215.
    Ye X, Wang L, Shang B, Wang Z, Wei W. NEDD4: a promising target for cancer therapy. Curr Cancer Drug Targets. 2014;14:549–56.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Salah Z, Cohen S, Itzhaki E, Aqeilan RI. NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation. Cell Cycle. 2013;12:3817–23.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, et al. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol. 2004;14:2228–36.PubMedCrossRefGoogle Scholar
  218. 218.
    Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell. 2007b;128:129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Wang L, Zhu B, Wang S, Wu Y, Zhan W, et al. Regulation of glioma migration and invasion via modification of Rap2a activity by the ubiquitin ligase Nedd4-1. Oncol Rep. 2017;37:2565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Zhang H, Nie W, Zhang X, Zhang G, Li Z, et al. NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro. PLoS One. 2013;8:e82789.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 2009;34:562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Melchor L, Saucedo-Cuevas LP, Munoz-Repeto I, Rodriguez-Pinilla SM, Honrado E, et al. Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Res. 2009;11:R86.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Yasui K, Arii S, Zhao C, Imoto I, Ueda M, et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology. 2002;35:1476–84.PubMedCrossRefGoogle Scholar
  224. 224.
    Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20.PubMedCrossRefGoogle Scholar
  225. 225.
    Zou Y, Mi J, Cui J, Lu D, Zhang X, et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem. 2009;284:33320–32.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Lopez-Beltran A, MacLennan GT, Montironi R. Cyclin E as molecular marker in the management of breast cancer: a review. Anal Quant Cytol Histol. 2006;28:111–4.PubMedGoogle Scholar
  227. 227.
    Higa LA, Yang X, Zheng J, Banks D, Wu M, et al. Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle. 2006;5:71–7.PubMedCrossRefGoogle Scholar
  228. 228.
    Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood. 2006;107:4291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Fan Y-C, Zhu Y-S, Mei P-J, Sun S-G, Zhang H, et al. Cullin1 regulates proliferation, migration and invasion of glioma cells. Med Oncol. 2014;31:227.PubMedCrossRefGoogle Scholar
  230. 230.
    Dong J, Wang XQ, Yao JJ, Li G, Li XG. Decreased CUL4B expression inhibits malignant proliferation of glioma in vitro and in vivo. Eur Rev Med Pharmacol Sci. 2015;19:1013–21.PubMedGoogle Scholar
  231. 231.
    Kemp Z, Rowan A, Chambers W, Wortham N, Halford S, et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 2005;65:11361–6.PubMedCrossRefGoogle Scholar
  232. 232.
    Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432:775–9.PubMedCrossRefGoogle Scholar
  233. 233.
    Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, et al. Inactivation of hCDC4 can cause chromosomal instability. Nature. 2004;428:77–81.PubMedCrossRefGoogle Scholar
  234. 234.
    Hagedorn M, Delugin M, Abraldes I, Allain N, Belaud-Rotureau MA, et al. FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients. Cell Div. 2007;2:9.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Moll UM, Petrenko O. The MDM2-p53 Interaction. Mol Cancer Res. 2003;1:1001–8.PubMedGoogle Scholar
  237. 237.
    Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002;2:594–604.PubMedCrossRefGoogle Scholar
  238. 238.
    Blattner C, Sparks A, Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol. 1999;19:3704–13.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Juven-Gershon T, Shifman O, Unger T, Elkeles A, Haupt Y, Oren M. The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Mol Cell Biol. 1998;18:3974–82.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature. 1995;375:694–8.PubMedCrossRefGoogle Scholar
  241. 241.
    Chen H, Xie L, Liu B. Clinical significance of MDM2 as a tumor biomarker. Chin German J Clin Oncol. 2012;11:356–60.CrossRefGoogle Scholar
  242. 242.
    Onel K, Cordon-Cardo C. MDM2 and prognosis. Mol Cancer Res. 2004;2:1–8.PubMedGoogle Scholar
  243. 243.
    Ye Y, Li X, Yang J, Miao S, Wang S, et al. MDM2 is a useful prognostic biomarker for resectable gastric cancer. Cancer Sci. 2013;104:590–8.PubMedCrossRefGoogle Scholar
  244. 244.
    Turbin DA, Cheang MC, Bajdik CD, Gelmon KA, Yorida E, et al. MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol. 2006;19:69–74.PubMedCrossRefGoogle Scholar
  245. 245.
    Higashiyama M, Doi O, Kodama K, Yokouchi H, Kasugai T, et al. MDM2 gene amplification and expression in non-small-cell lung cancer: immunohistochemical expression of its protein is a favourable prognostic marker in patients without p53 protein accumulation. Br J Cancer. 1997;75:1302–8.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Fischer PM. Peptide, peptidomimetic, and small-molecule antagonists of the p53-HDM2 protein-protein interaction. Int J Pept Res Ther. 2006;12:3–19.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Biernat W, Kleihues P, Yonekawa Y, Ohgaki H. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol. 1997;56:180–5.PubMedCrossRefGoogle Scholar
  248. 248.
    Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505.PubMedCrossRefGoogle Scholar
  249. 249.
    Beaudenon S, Huibregtse JM. HPV E6, E6AP and cervical cancer. BMC Biochem. 2008;9(Suppl 1):S4.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 1991;10:4129–35.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004;18:2269–82.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Kelley ML, Keiger KE, Lee CJ, Huibregtse JM. The global transcriptional effects of the human papillomavirus E6 protein in cervical carcinoma cell lines are mediated by the E6AP ubiquitin ligase. J Virol. 2005;79:3737–47.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Nguyen M, Song S, Liem A, Androphy E, Liu Y, Lambert PF. A mutant of human papillomavirus type 16 E6 deficient in binding alpha-helix partners displays reduced oncogenic potential in vivo. J Virol. 2002;76:13039–48.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Tomaic V, Pim D, Banks L. The stability of the human papillomavirus E6 oncoprotein is E6AP dependent. Virology. 2009;393:7–10.PubMedCrossRefGoogle Scholar
  255. 255.
    Mishra A, Jana NR. Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell Mol Life Sci. 2008;65:656–66.PubMedCrossRefGoogle Scholar
  256. 256.
    Mishra A, Godavarthi SK, Jana NR. UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis. 2009;36:26–34.PubMedCrossRefGoogle Scholar
  257. 257.
    Matentzoglu K, Scheffner M. Ubiquitin ligase E6-AP and its role in human disease. Biochem Soc Trans. 2008;36:797–801.PubMedCrossRefGoogle Scholar
  258. 258.
    Acquaviva C, Pines J. The anaphase-promoting complex/cyclosome: APC/C. J Cell Sci. 2006;119:2401–4.PubMedCrossRefGoogle Scholar
  259. 259.
    Manchado E, Eguren M, Malumbres M. The anaphase-promoting complex/cyclosome (APC/C): cell- cycle-dependent and -independent functions. Biochem Soc Trans. 2010;38:65–71.PubMedCrossRefGoogle Scholar
  260. 260.
    Lehman NL, Tibshirani R, Hsu JY, Natkunam Y, Harris BT, et al. Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am J Pathol. 2007;170:1793–805.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Penas C, Ramachandran V, Ayad NG. The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Front Oncol. 2011;1:60.PubMedGoogle Scholar
  262. 262.
    Fujita T, Liu W, Doihara H, Wan Y. Regulation of Skp2-p27 axis by the Cdh1/anaphase-promoting complex pathway in colorectal tumorigenesis. Am J Pathol. 2008;173:217–28.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Lu L, Hu S, Wei R, Qiu X, Lu K, et al. The HECT type ubiquitin ligase NEDL2 is degraded by anaphase- promoting complex/cyclosome (APC/C)-Cdh1, and its tight regulation maintains the metaphase to anaphase transition. J Biol Chem. 2013;288:35637–50.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Sansregret L, Patterson JO, Dewhurst S, Lopez-Garcia C, Koch A, et al. APC/C dysfunction limits excessive cancer chromosomal instability. Cancer Discov. 2017;7:218–33.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Lee SJ, Langhans SA. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin- induced cell cycle arrest and apoptosis. BMC Cancer. 2012;12:44.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Lasorella A, Stegmuller J, Guardavaccaro D, Liu G, Carro MS, et al. Degradation of Id2 by the anaphase- promoting complex couples cell cycle exit and axonal growth. Nature. 2006;442:471–4.PubMedCrossRefGoogle Scholar
  267. 267.
    Mao DD, Gujar AD, Mahlokozera T, Chen I, Pan Y, et al. A CDC20-APC/SOX2 signaling axis regulates human glioblastoma stem-like cells. Cell Rep. 2015;11:1809–21.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    David D, Nair SA, Pillai MR. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression. Biochim Biophys Acta Rev Cancer. 2013;1835:119–28.CrossRefGoogle Scholar
  269. 269.
    Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, et al. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001;276:12477–80.PubMedCrossRefGoogle Scholar
  270. 270.
    Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell. 2000;6:1365–75.PubMedCrossRefGoogle Scholar
  271. 271.
    Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell. 2003;14:2809–17.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.PubMedCrossRefGoogle Scholar
  273. 273.
    Massague J. TGFbeta in cancer. Cell. 2008;134:215–30.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Fukuchi M, Fukai Y, Masuda N, Miyazaki T, Nakajima M, et al. High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 2002;62:7162–5.PubMedGoogle Scholar
  275. 275.
    Jin C, Yang Y-a, Anver MR, Morris N, Wang X, Zhang YE. Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res. 2009;69:735–40.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Ke M, Mo L, Li W, Zhang X, Li F, Yu H. Ubiquitin ligase SMURF1 functions as a prognostic marker and promotes growth and metastasis of clear cell renal cell carcinoma. FEBS Open Bio. 2017;7:577–86.PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13:239–52.PubMedCrossRefGoogle Scholar
  278. 278.
    Gordon GJ, Mani M, Mukhopadhyay L, Dong L, Edenfield HR, et al. Expression patterns of inhibitor of apoptosis proteins in malignant pleural mesothelioma. J Pathol. 2007;211:447–54.PubMedCrossRefGoogle Scholar
  279. 279.
    Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6:1796–803.PubMedGoogle Scholar
  280. 280.
    Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, et al. High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res. 2004;10:3737–44.PubMedCrossRefGoogle Scholar
  281. 281.
    Pluta P, Jeziorski A, Cebula-Obrzut AP, Wierzbowska A, Piekarski J, Smolewski P. Expression of IAP family proteins and its clinical importance in breast cancer patients. Neoplasma. 2015;62:666–73.PubMedCrossRefGoogle Scholar
  282. 282.
    Rodriguez-Berriguete G, Torrealba N, Ortega MA, Martinez-Onsurbe P, Olmedilla G, et al. Prognostic value of inhibitors of apoptosis proteins (IAPs) and caspases in prostate cancer: caspase-3 forms and XIAP predict biochemical progression after radical prostatectomy. BMC Cancer. 2015;15:809.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR. Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer. 2007;120:2344–52.PubMedCrossRefGoogle Scholar
  284. 284.
    Wu HH, Wu JY, Cheng YW, Chen CY, Lee MC, et al. cIAP2 upregulated by E6 oncoprotein via epidermal growth factor receptor/phosphatidylinositol 3-kinase/AKT pathway confers resistance to cisplatin in human papillomavirus 16/18-infected lung cancer. Clin Cancer Res. 2010;16:5200–10.PubMedCrossRefGoogle Scholar
  285. 285.
    Carter BZ, Kornblau SM, Tsao T, Wang RY, Schober WD, et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood. 2003;102:4179–86.PubMedCrossRefGoogle Scholar
  286. 286.
    Ferreira CG, van der Valk P, Span SW, Ludwig I, Smit EF, et al. Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin Cancer Res. 2001;7:2468–74.PubMedGoogle Scholar
  287. 287.
    Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun. 1999;264:847–54.PubMedCrossRefGoogle Scholar
  288. 288.
    Oberoi-Khanuja TK, Murali A, Rajalingam K. IAPs on the move: role of inhibitors of apoptosis proteins in cell migration. Cell Death Dis. 2013;4:e784.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Naramura M, Nadeau S, Mohapatra B, Ahmad G, Mukhopadhyay C, et al. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Oncotarget. 2011;2:245–50.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol. 2001;2:294.PubMedCrossRefGoogle Scholar
  291. 291.
    Cristobal I, Manso R, Rincon R, Carames C, Madoz-Gurpide J, et al. Up-regulation of c-Cbl suggests its potential role as oncogene in primary colorectal cancer. Int J Colorectal Dis. 2014;29:641.PubMedCrossRefGoogle Scholar
  292. 292.
    Ito R, Nakayama H, Yoshida K, Matsumura S, Oda N, Yasui W. Expression of Cbl linking with the epidermal growth factor receptor system is associated with tumor progression and poor prognosis of human gastric carcinoma. Virchows Arch. 2004;444:324–31.PubMedCrossRefGoogle Scholar
  293. 293.
    Knight JF, Shepherd CJ, Rizzo S, Brewer D, Jhavar S, et al. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br J Cancer. 2008;99:1849–58.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Tan YH, Krishnaswamy S, Nandi S, Kanteti R, Vora S, et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS One. 2010;5:e8972.PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Jing Z, Li L, Wang X, Wang M, Cai Y, et al. High c-Cbl expression in gliomas is associated with tumor progression and poor prognosis. Oncol Lett. 2016;11:2787–91.PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Kamei T, Machida K, Nimura Y, Senga T, Yamada I, et al. C-Cbl protein in human cancer tissues is frequently tyrosine phosphorylated in a tumor-specific manner. Int J Oncol. 2000;17:335–9.PubMedGoogle Scholar
  297. 297.
    Seong MW, Ka SH, Park JH, Park JH, Yoo HM, et al. Deleterious c-Cbl exon skipping contributes to human glioma. Neoplasia. 2015;17:518–24.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Nakayama K, Qi J, Ronai ZE. The ubiquitin ligase Siah2 and the hypoxia response. Mol Cancer Res. 2009;7:443–51.PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Qi J, Nakayama K, Gaitonde S, Goydos JS, Krajewski S, et al. The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and-independent pathways. Proc Natl Acad Sci. 2008;105:16713–8.PubMedCrossRefGoogle Scholar
  300. 300.
    Kim Y, Kim H, Park D, Jeoung D. miR-335 targets SIAH2 and confers sensitivity to anti-cancer drugs by increasing the expression of HDAC3. Mol Cells. 2015;38:562–72.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Gao Y, Liu Y, Meng F, Shang P, Wang S, et al. Overexpression of Siah2 is associated with poor prognosis in patients with epithelial ovarian carcinoma. Int J Gynecol Cancer. 2016;6:114–9.CrossRefGoogle Scholar
  302. 302.
    Moreno P, Lara-Chica M, Soler-Torronteras R, Caro T, Medina M, et al. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2) Is Increased in Human Lung Cancer. PLoS One. 2015;10:e0143376.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734–47.PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Sun J, Zhang X, Han Y, Zhen J, Meng Y, Song M. Overexpression of seven in absentia homolog 2 protein in human breast cancer tissues is associated with the promotion of tumor cell malignant behavior in in vitro. Oncol Rep. 2016a;36:1301–12.PubMedCrossRefGoogle Scholar
  305. 305.
    Shi H, Zheng B, Wu Y, Tang Y, Wang L, et al. Ubiquitin ligase Siah1 promotes the migration and invasion of human glioma cells by regulating HIF-1α signaling under hypoxia. Oncol Rep. 2015;33:1185–90.PubMedCrossRefGoogle Scholar
  306. 306.
    Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11:792.PubMedCrossRefGoogle Scholar
  307. 307.
    Sakuma M, Akahira J, Suzuki T, Inoue S, Ito K, et al. Expression of estrogen-responsive finger protein (Efp) is associated with advanced disease in human epithelial ovarian cancer. Gynecol Oncol. 2005;99:664–70.PubMedCrossRefGoogle Scholar
  308. 308.
    Suzuki T, Urano T, Tsukui T, Horie-Inoue K, Moriya T, et al. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin Cancer Res. 2005;11:6148–54.PubMedCrossRefGoogle Scholar
  309. 309.
    Zhu Z, Wang Y, Zhang C, Yu S, Zhu Q, et al. TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-beta signaling. Sci Rep. 2016;6:19070.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Qin Y, Cui H, Zhang H. Overexpression of TRIM25 in lung cancer regulates tumor cell progression. Technol Cancer Res Treat. 2016;15:707–15.PubMedCrossRefGoogle Scholar
  311. 311.
    Sun N, Xue Y, Dai T, Li X, Zheng N. Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-beta signaling. Biosci Rep. 2017.Google Scholar
  312. 312.
    Abu-Asab MS, Chaouchi M, Alesci S, Galli S, Laassri M, et al. Biomarkers in the age of omics: time for a systems biology approach. Omics. 2011;15:105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Srivastava S. Biomarkers in cancer screening and early detection. New York: Wiley; 2017.CrossRefGoogle Scholar
  314. 314.
    Phan JH, Moffitt RA, Stokes TH, Liu J, Young AN, et al. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol. 2009;27:350–8.PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vibhuti Joshi
    • 1
  • Arun Upadhyay
    • 1
  • Ayeman Amanullah
    • 1
  • Ribhav Mishra
    • 1
  • Amit Mishra
    • 1
    Email author
  1. 1.Cellular and Molecular Neurobiology UnitIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations