Molecular Diagnostic in Prostate Cancer

  • Mohammad Kaleem AhmadEmail author
  • Soumya Srivastava
  • Abbas Ali Mahdi


Prostate cancer is an ideal tumor model for heterogeneity in almost every aspect. Its clinical, spatial, and morphological heterogeneity divided by the high-level molecular genetic diversity outline the complexity of this disease in the clinical and research settings. In this chapter, we summarize the main aspects of prostate cancer and its molecular diagnosis at different levels, with special attention given to the spatial heterogeneity within the prostate, and to understand its morphological heterogeneity, with respect to tumor grading and modern classifications. Prostate-specific antigen (PSA) screening is associated with a decline in prostate cancer related mortality. However, screening has also lead to over diagnosis and overtreatment of clinically insignificant tumors. Newly, certain national guidelines (eg, US Preventive Services Task Force) have recommended against PSA screening, which may lead to a reverse-stage migration, even though many prostate tumors are indolent at presentation, others are aggressive and are appropriate targets for treatment interventions. Molecular markers may help in discrimination of indolent and aggressive tumors, at the time of diagnosis.


Prostate cancer Molecular techniques Prognosis Diagnosis Molecular markers PSA 


  1. 1.
    Ma S, Tang KH, Chan YP, et al. miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707. [PubMed: 21112564].CrossRefGoogle Scholar
  2. 2.
    Goodman OB, Fink LM, Symanowski JT, Wong B, Grobaski B, Pomerantz D, Ma Y, Ward DC, Vogelzang NJ. Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol Biomarkers Prev. 2009;18:1904–13.CrossRefGoogle Scholar
  3. 3.
    Feng DQ, Huang B, Li J, Liu J, Chen XM, Xu YM, Chen X, Zhang HB, Hu LH, Wang XZ. Selective miRNA expression profile in chronic myeloid leukemia K562 cell-derived exosomes. Asian Pac J Cancer Prev. 2013;14:7501–8.CrossRefGoogle Scholar
  4. 4.
    Hessels D, Rittenhouse HG, Schalken JA. Molecular diagnosis in prostate cancer. 2009;6:255–61.Google Scholar
  5. 5.
    Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;132:1133–45.CrossRefGoogle Scholar
  6. 6.
    Wu K, Hu M, Chen Z, Xiang F, Chen G, Yan W, Peng Q, Chen X. Asiatic acid enhances survival of human AC16 cardiomyocytes under hypoxia by upregulating miR-1290. IUBMB Life. 2017;69(9):660–7.CrossRefGoogle Scholar
  7. 7.
    Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta. 2012;1819:1154–63.CrossRefGoogle Scholar
  8. 8.
    Zhao N, Yu H, Yu H, Sun M, Zhang Y, Xu M, Gao W. MiRNA-711-SP1-collagen-I pathway is involved in the anti-fibrotic effect of pioglitazone in myocardial infarction. Sci China Life Sci. 2013;56:431–9.CrossRefGoogle Scholar
  9. 9.
    Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.CrossRefGoogle Scholar
  10. 10.
    Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, Santella RM. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72:1469–77.CrossRefGoogle Scholar
  11. 11.
    Liao A, Gao Tan LC, Zhou W, Hu H. RASSF1A inhibits gastric cancer cell proliferation by miR-711-mediated downregulation of CDK4 miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. expression. Oncotarget. 2016;7:5842.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Jackson RJ, Standart N. How do microRNAs regulate gene expression. Sci STKE. 2007;(367):re1. Kumar A. Epidemiology of prostate cancer in India. Meta Gene. 2014;29:596–605.Google Scholar
  13. 13.
    Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate-resistance and novel therapeutic approaches. Oncogene. 2013;32:5501.CrossRefGoogle Scholar
  14. 14.
    Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH, Goggins M. MicroRNA array analysis finds elevated serum. Clin Cancer Res. 2013;19(13):3600–10.CrossRefGoogle Scholar
  15. 15.
    Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer. 2013;108:1659–67.CrossRefGoogle Scholar
  16. 16.
    Lin M, Shi C, Lin X, Pan J, Shen S, Xu Z, Chen Q. sMicroRNA-1290 inhibits cells proliferation and migration by targeting FOXA1 in gastric cancer cells. Gene. 2016;582:137–42.CrossRefGoogle Scholar
  17. 17.
    Yang H, Li Q, Zhao W, Yuan D, Zhao H, Zhou Y. miR-329 suppresses the growth and motility of neuroblastoma by targeting KDM1A. FEBS Lett. 2014;588:192–7.CrossRefGoogle Scholar
  18. 18.
    Abd Elmageed ZY, Yang Y, Thomas R, Ranjan M, Mondal D. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells. 2014;32:983–97.CrossRefGoogle Scholar
  19. 19.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefGoogle Scholar
  20. 20.
    Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2008;68:6162–70.CrossRefGoogle Scholar
  21. 21.
    Miao Y, Zheng W, Li N, Su Z, Zhao L, Zhou H, Jia L. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep. 2017;7:41942. Scholar
  22. 22.
    Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.PubMedGoogle Scholar
  23. 23.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N, Løvendorf MB, Ahler CB, Svensson L, Kopp KL, Vennegaard MT, Lauenborg B, Zibert JR, Krejsgaard T. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118:5891–900.CrossRefGoogle Scholar
  24. 24.
    Ramalho-Carvalho J, Graça I, Gomez A, Oliveira J, Henrique R, Esteller M, et al. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer. J Hematol Oncol. 2017;10:43.CrossRefGoogle Scholar
  25. 25.
    Stuopelytė K, Daniūnaitė K, Jankevičius F, Jarmalaitė S. Detection of miRNAs in urine of prostate cancer patients. Medicina. 2016;52:116–24.CrossRefGoogle Scholar
  26. 26.
    Rizos E, Siafakas N, Katsantoni E, Skourti E, Salpeas V, Rizos I, et al. Let-7, Mir-98 and Mir-181 as biomarkers for cancer and schizophrenia. PLoS One. 2015;10:e0123522.CrossRefGoogle Scholar
  27. 27.
    Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, Faden AI. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654–68.CrossRefGoogle Scholar
  28. 28.
    Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 2010;70:9570–80.CrossRefGoogle Scholar
  29. 29.
    Mihelich BL, Khramtsova EA, Arva N, Vaishnav A, Johnson DN, Giangreco AA, et al. MiR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. J Biol Chem. 2011;286:44503–11.CrossRefGoogle Scholar
  30. 30.
    Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320–8.CrossRefGoogle Scholar
  31. 31.
    Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, et al. Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol. 2010;11:725–32.CrossRefGoogle Scholar
  32. 32.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.CrossRefGoogle Scholar
  33. 33.
    Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, Kudrolli TA, Yegnasubramanian S, Luo J, Rodriguez R, Mendell JT. miR-21: an androgen receptor–regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69:7165–9.CrossRefGoogle Scholar
  34. 34.
    Trang P, Weidhaas JB, Slack FJ. MicroRNAs as potential cancer therapeutics. Oncogene. 2008;27:S52–7.CrossRefGoogle Scholar
  35. 35.
    Li W, Liang J, Zhang Z, Lou H, Zhao L, Xu Y, Ou R. MicroRNA-329-3p targets MAPK1 to suppress cell proliferation, migration and invasion in cervical cancer. Oncol Rep. 2017;37:2743–50.CrossRefGoogle Scholar
  36. 36.
    Daniel R, Wu Q, Williams V, Clark G, Guruli G, Zehner Z. A panel of microRNAs as diagnostic biomarkers for the identification of prostate cancer. Int J Mol Sci. 2017;18:1281.CrossRefGoogle Scholar
  37. 37.
    Xiong F, Wu C, Chang J, Yu D, Xu B, Yuan P, Zhai K, Xu J, Tan W, Lin D. Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer. Cancer Res. 2011;71:5175–81.CrossRefGoogle Scholar
  38. 38.
    Xu L, Qi X, Duan S, Xie Y, Ren X, Chen G, et al. MicroRNAs: potential biomarkers for disease diagnosis. Biomed Mater Eng. 2014;24:3917–25.PubMedGoogle Scholar
  39. 39.
    Zhang C, Liu J, Tan C, Yue X, Zhao Y, Peng J, Wang X, Laddha SV, Chan CS, Zheng S, Hu W. microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis. Oncotarget. 2016;7:8783.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ye L, Jiang T, Shao H, Zhong L, Wang Z, Liu Y, Tang H, Qin B, Zhang X, Fan J. miR-1290 is a biomarker in DNA-mismatch-repair-deficient colon cancer and promotes resistance to 5-fluorouracil by directly targeting hMSH2. Mol Ther Nucleic Acids. 2017;7:453–64.CrossRefGoogle Scholar
  41. 41.
    Liu R, Zhou Z, Huang J, Chen C. PMEPA1 promotes androgen receptor-negative prostate cell proliferation through suppressing the Smad3/4-c-Myc-p21 Cip1 signaling pathway. J Pathol. 2004;223:683–94.CrossRefGoogle Scholar
  42. 42.
    Hu JY, Yi W, Zhang MY, Xu R, Zeng LS, Long XR, Zhou XM, Zheng XF, Kang Y, Wang HY. MicroRNA-711 is a prognostic factor for poor overall survival and has an oncogenic role in breast cancer. Oncol Lett. 2016;11:2155–63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohammad Kaleem Ahmad
    • 1
    Email author
  • Soumya Srivastava
    • 1
  • Abbas Ali Mahdi
    • 1
  1. 1.Department of BiochemistryKing George’s Medical UniversityLucknowIndia

Personalised recommendations