Advertisement

Recent Advances in Molecular Diagnostic Approaches for Cancer

  • Kamla Kant ShuklaEmail author
  • Shrimanjunath Sankanagoudar
  • Barkha Singhal Sanganeria
  • Puneet Pareek
  • Jeevan Ram
  • Sanjeev Misra
  • Praveen Sharma
Chapter

Abstract

Globally cancer is considered as a disease of high morbidity and mortality, which includes a group of diseases having uncontrolled cell growth and proliferation. Most cancers are curable if detected at an early stage. Although it is challenging but an advances in molecular biomarkers and methods, early detection and diagnosis of cancer could be possible. The various genomic and proteomic tools are being used for identification of molecular signatures like genetic, epigenetic changes in gene expressions and protein expression. These approaches may help to detect risk of cancer and monitor therapy. Molecular diagnosis unravels different changes that occur during the transformation of a normal to tumour cells and capture information as expression patterns. Molecular techniques such as real-time PCR, DNA sequencing and microarrays being used extensively for early diagnosis of cancer. This chapter summarizes various techniques and molecular biomarkers for early diagnosis of cancer, which would help to predict cancer and development of new-targeted therapies.

Keywords

Molecular diagnosis Cancer Gene qPCR DNA sequencing 

References

  1. 1.
    World Health Organization. Cancer Fact sheet N°297. February 2018. Accessed 21 Mar 2018.Google Scholar
  2. 2.
    National Cancer Institute. Defining cancer. Accessed 28 Mar 2018.Google Scholar
  3. 3.
    Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14(6):e1007362.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet. 2003;33:238–44.PubMedGoogle Scholar
  5. 5.
    McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer. 2017;24(9):T23–31.PubMedGoogle Scholar
  6. 6.
    Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355(6331):1330–4.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Emery J, Barlow-Stewart K, Metcalfe SA. There’s cancer in the family. Aust Fam Physician. 2009;38(4):194–8.PubMedGoogle Scholar
  8. 8.
    Rhine CL, Cygan KJ, Soemedi R, Maguire S, Murray MF, Monaghan SF, Fairbrother WG. Hereditary cancer genes are highly susceptible to splicing mutations. PLoS Genet. 2018;14(3):e1007231.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805–D81.PubMedGoogle Scholar
  10. 10.
    Simonati C1, Limina RM, Gelatti U, Indelicato A, Scarcella C, Donato F, Nardi G. Cancer incidence and mortality in some health districts in Brescia area 1993–1995. Ann Ig. 2004;16(6):767–75.PubMedGoogle Scholar
  11. 11.
    Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Idikio HA. Human cancer classification: a systems biology-based model integrating morphology, cancer stem cells, proteomics, and genomics. J Cancer. 2011;2:107–15.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wilt TJ, Harris RP, Qaseem A, High Value Care Task Force of the American College of Physicians. Screening for cancer: advice for high-value care from the American College of Physicians. Ann Intern Med. 2015;162(10):718–25.PubMedGoogle Scholar
  14. 14.
    Weitzel JN, Blazer KR, MacDonald DJ, Culver JO, Offit K. Genetics, genomics, and cancer risk assessment: state of the art and future directions in the era of personalized medicine. CA Cancer J Clin. 2011;61(5):327–59.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Baron JA. Screening for cancer with molecular markers: progress comes with potential problems. Nat Rev Cancer. 2012;12(5):368–71.PubMedGoogle Scholar
  16. 16.
    Shukla KK, Misra S, Pareek P, Mishra V, Singhal B, Sharma P. Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. Urol Oncol. 2017;35(3):92–101.PubMedGoogle Scholar
  17. 17.
    Saijo K, Ishioka C. Development of biomarkers for molecular target drugs. Nihon Rinsho. 2015;73(8):1308–12.PubMedGoogle Scholar
  18. 18.
    Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014;35(6):672–88.PubMedGoogle Scholar
  19. 19.
    Li D, Kumaraswamy E, Harlan-Williams LM, Jensen RA. The role of BRCA1 and BRCA2 in prostate cancer. Front Biosci (Landmark Ed). 2013;18:1445–59.Google Scholar
  20. 20.
    Foulkes WD. BRCA1 and BRCA2 - update and implications on the genetics of breast cancer: a clinical perspective. Clin Genet. 2014;85(1):1–4.PubMedGoogle Scholar
  21. 21.
    Poliseno L, Pandolfi PP. PTEN ceRNA networks in human cancer. Methods. 2015;77-78:41–50.PubMedGoogle Scholar
  22. 22.
    Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129–44.PubMedGoogle Scholar
  23. 23.
    Wang B, Yu L, Yang GZ, Luo X, Huang L. Application of multiplex nested methylated specific PCR in early diagnosis of epithelial ovarian cancer. Asian Pac J Cancer Prev. 2015;16(7):3003–7.PubMedGoogle Scholar
  24. 24.
    Zhao Y, Cao X, Tang J, Zhou L, Gao Y, Wang J, Zheng Y, Yin S, Wang Y. A novel multiplex real-time PCR assay for the detection and quantification of HPV16/18 and HSV1/2 in cervical cancer screening. Mol Cell Probes. 2012;26(2):66–72.PubMedGoogle Scholar
  25. 25.
    Mandhaniya S, Iqbal S, Sharawat SK, Xess I, Bakhshi S. Diagnosis of invasive fungal infections using real-time PCR assay in paediatric acute leukaemia induction. Mycoses. 2012 Jul;55(4):372–9.PubMedGoogle Scholar
  26. 26.
    Tipu HN, Shabbir A. Evolution of DNA sequencing. J Coll Physicians Surg Pak. 2015;25(3):210–5.PubMedGoogle Scholar
  27. 27.
    Boyd SD. Diagnostic applications of high-throughput DNA sequencing. Annu Rev Pathol. 2013;8:381–410.PubMedGoogle Scholar
  28. 28.
    Inaoka K, Inokawa Y, Nomoto S. Genomic-wide analysis with microarrays in human oncology. Microarrays (Basel). 2015;4(4):454–73.Google Scholar
  29. 29.
    Sekar D, Thirugnanasambantham K, Hairul Islam VI, Saravanan S. Sequencing approaches in cancer treatment. Cell Prolif. 2014;47(5):391–5.PubMedGoogle Scholar
  30. 30.
    Ferguson-Smith MA. History and evolution of cytogenetics. Mol Cytogenet. 2015;8:19.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1):24–39.PubMedGoogle Scholar
  32. 32.
    García-Peláez B, Trias I, Román R, Pubill C, Banús JM, Puig X. Fluorescent in situ hybridization as a predictor of relapse in urothelial carcinoma. Actas Urol Esp. 2013;37(7):395–400.PubMedGoogle Scholar
  33. 33.
    Van der Logt EM, Kuperus DA, van Setten JW, van den Heuvel MC, Boers JE, Schuuring E, Kibbelaar RE. Fully automated fluorescent in situ hybridization (FISH) staining and digital analysis of HER2 in breast cancer: a validation study. PLoS One. 2015;10(4):e0123201.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ho DW, Yang ZF, Wong BY, Kwong DL, Sham JS, Wei WI, Yuen AP. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry serum protein profiling to identify nasopharyngeal carcinoma. Cancer. 2006;107(1):99–107.PubMedGoogle Scholar
  35. 35.
    Yang SY, Xiao XY, Zhang WG, Zhang LJ, Zhang W, Zhou B, Chen G, He DC. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer. 2005;5:83.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang GQ, Du J, Pang D. Detection and clinical significance of serum proteomic patterns of breast cancers by surface enhanced laser desorption/ionization time of flight mass spectrometry. Zhonghua Zhong Liu Za Zhi. 2006;28(3):204–7.PubMedGoogle Scholar
  37. 37.
    Reubi JC. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med. 1997;41(2):63–70.PubMedGoogle Scholar
  38. 38.
    Wang W, Nag S, Zhang R. Pharmacokinetics and pharmacodynamics in breast cancer animal models. Methods Mol Biol. 2016;1406:271–87.PubMedGoogle Scholar
  39. 39.
    Lee W, Lockhart AC, Kim RB, Rothenberg ML. Cancer pharmacogenomics: powerful tools in cancer chemotherapy and drug development. Oncologist. 2005;10(2):104–11.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kamla Kant Shukla
    • 1
    Email author
  • Shrimanjunath Sankanagoudar
    • 1
  • Barkha Singhal Sanganeria
    • 2
  • Puneet Pareek
    • 3
  • Jeevan Ram
    • 4
  • Sanjeev Misra
    • 4
  • Praveen Sharma
    • 1
  1. 1.Department of BiochemistryAll India Institute of Medical SciencesJodhpurIndia
  2. 2.Centre for Transplant and Renal Research, Westmead Institute for Medical ResearchWestmeadAustralia
  3. 3.Department of Radiation OncologyAll India Institute of Medical SciencesJodhpurIndia
  4. 4.Department of Surgical OncologyAll India Institute of Medical SciencesJodhpurIndia

Personalised recommendations