Advertisement

Bioactive Volatile Metabolites of Trichoderma: An overview

  • Richa Salwan
  • Nidhi Rialch
  • Vivek Sharma
Chapter

Abstract

Root-associated beneficial microbes are potential eco-friendly tool and play important role in triggering plant performance against biotic and abiotic stresses. In comparison to chemical-based practices, the fungi such as Trichoderma which are also explored as biocontrol agents are promising and sustainable solution for managing plant diseases. The molecular arsenal of these biocontrol attributes including secretion of volatile and nonvolatile compounds which either alone or in combination with other metabolites is responsible for inhibiting phytopathogens and promoting health of the associated host. Till date, a number of volatile organic compounds (VOCs) of diverse chemical nature have been characterized from Trichoderma spp. These metabolites of Trichoderma are of vital importance in agricultural, food, and pharmaceutical applications. The VOCs of compounds are known to play diverse functions both in above and underground part of an ecosystem. The widely recognized molecular role of VOCs includes mediators of inter-colony communication, warning signals, pest management, and nutrient acquisitions through root architecture adjustment. The volatile bioactive metabolites such as 6-pentyl-α-pyrone are known to exhibit multiple actions such as inhibiting growth of fungal mycelium, spore germination, and pigmentation of plant pathogenic fungi. Here, an attempt has been made to discuss bioactive volatile metabolites of Trichoderma origin and their role in combating both biotic and abiotic stress responses of host plants.

Keywords

Trichoderma Secondary metabolites Volatile compounds Pathogen suppression Plant growth promotion 

Notes

Acknowledgment

The authors are thankful to SEED Division, Department of Science and Technology, New Delhi, India for providing funding under Scheme for Young Scientists and Technologists (award letter NO-SP/YO/125/2017).

References

  1. Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  2. Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP et al (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121.  https://doi.org/10.1186/1471-2164-14-121 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295.  https://doi.org/10.1093/jxb/erp165 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma Cacao Trichomes. Mycol Res 113(12):1365–1376.  https://doi.org/10.1016/j.mycres.2009.09.004 CrossRefPubMedGoogle Scholar
  5. Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth. Plant Signal Behav 7:79–85.  https://doi.org/10.4161/psb.7.1.18418 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barakat FM, Abada KA, Abou-Zeid NM, El-Gammal YHE (2014) Effect of volatile and non-volatile compounds of Trichoderma spp. on Botrytis fabae the causative agent of faba bean chocolate spot. American J Life Sci 2:11–18Google Scholar
  7. Bennett JW, Hung R, Lee S, Padhi S (2012) Fungal and bacterial volatile organic compounds; an overview and their role as ecological signaling agents. In: Hock B (ed) The mycota IX fungal interactions. Springer-Verlag, Heidelberg/Berlin, pp 229–250Google Scholar
  8. Beranek J, Kubatova A (2008) Evaluation of solid-phase microextraction methods for determination of trace concentration aldehydes in aqueous solution. J Chromatogr A 1209:44–54.  https://doi.org/10.1016/j.chroma.2008.09.013 CrossRefPubMedGoogle Scholar
  9. Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis Eceriferum1 and Eceriferum3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118.  https://doi.org/10.1105/tpc.112.099796 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berry DR (1988) Products of primary metabolic pathways. In: Berry DR (ed) Physiology of industrial fungi. Blackwell Scientific Publications, Oxford, pp 130–160Google Scholar
  11. Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206Google Scholar
  12. Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Chaudhary DK, Verma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195CrossRefGoogle Scholar
  13. Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843CrossRefGoogle Scholar
  14. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T et al (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058.  https://doi.org/10.1111/j.1462-2920.2011.02582.x CrossRefPubMedGoogle Scholar
  15. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54(4):656–669.  https://doi.org/10.1111/j.1365-313X.2008.03449.x CrossRefPubMedGoogle Scholar
  16. Brown M, Shanks J (2012) Linear hydrocarbon producing pathways in plants, algae and microbes. In: Gopalakrishnan K, Leeuwan J, Brown R (eds) Sustainable bioenergy and bioproducts. Springer, London, pp 1–11.  https://doi.org/10.1007/978-1-4471-2324-8_1 CrossRefGoogle Scholar
  17. Bruce A, Verrall S, Hackett CA, Wheatley RE (2004) Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58:193–198CrossRefGoogle Scholar
  18. Bruce BA, Wheatley RE, Humphris SN, Hackett CA, Florence MEJ (2000) Production of Volatile Organic Compounds by Trichoderma in Media Containing Different Amino Acids and Their Effect on Selected Wood Decay Fungi. Holzforschung 54:481–486CrossRefGoogle Scholar
  19. Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65:3668–3673PubMedPubMedCentralGoogle Scholar
  20. Chahal A, Monreal CM, Bissette J, Rowland O, Smith ML, Miller SS (2014) Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids. J Environ Sci Health, Part B 49:945–954.  https://doi.org/10.1080/03601234.2014.951581 CrossRefGoogle Scholar
  21. Chaintreau A (2001) Simultaneous distillation-extraction: from birth to maturity – review. Flavour Fragance J 16:136–148.  https://doi.org/10.1002/ffj.967 CrossRefGoogle Scholar
  22. Chen L, Ai P, Zhang J, Deng Q, Wang S, Li S, Zhu J, Li P, Zheng A (2016) RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA. Database curation.  https://doi.org/10.1093/database/baw031 CrossRefGoogle Scholar
  23. Chet I (1987) Trichoderma-application, mode of action and potential as a biocontrol agent of soil borne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160Google Scholar
  24. Chiron N, Michelot D (2005) Odeurs de champignons: chimie et role dans les interactions biotiquesdune revue. Cryptogam Mycol 26:299–364Google Scholar
  25. Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH and changes the protein composition. FEMS Microbiol Ecol 54:67–75.  https://doi.org/10.1016/j.femsec.2005.02.013 CrossRefPubMedGoogle Scholar
  26. Chung JH, Song GC, Ryu CM (2016) Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687.  https://doi.org/10.1007/s11103-015-0344-8 CrossRefPubMedGoogle Scholar
  27. Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513CrossRefGoogle Scholar
  28. Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438.  https://doi.org/10.1021/jf60180a010 CrossRefGoogle Scholar
  29. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin- dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592.  https://doi.org/10.1104/pp.108.130369 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genetics and Biology 56:67–77CrossRefGoogle Scholar
  31. D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J et al (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826.  https://doi.org/10.1111/pce.12220 CrossRefPubMedGoogle Scholar
  32. Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76:1161–1171.  https://doi.org/10.1007/s00253-007-1095-5 CrossRefPubMedGoogle Scholar
  33. Dennis C, Webster J (1970) Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc 57:41–48CrossRefGoogle Scholar
  34. Dennis C, Webster J (1971a) Antagonistic properties of species-groups of Trichoderma. Trans Br Mycol Soc 57:363–369CrossRefGoogle Scholar
  35. Dennis C, Webster J (1971b) Antagonistic properties of species groups of Trichoderma-II. Production of volatile antibiotics. Trans Br Mycol Soc 57:47–48Google Scholar
  36. Dewick PM (2009) Medicinal natural products: a biosynthetic approach, vol 3. Wiley, Chichester, ISBN:9780470741689Google Scholar
  37. Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32.  https://doi.org/10.1111/nph.12145 CrossRefPubMedGoogle Scholar
  38. Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703.  https://doi.org/10.1007/s10886-012-0135-5 CrossRefPubMedGoogle Scholar
  39. Elke K, Begerow J, Oppermann H, Kramer U, Jermann E, Dunemann L (1999) Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID – a new feasible approach for the detection of an exposure to indoor mould fungi? J Environ Monit 1:445–452CrossRefGoogle Scholar
  40. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol 209:237–241.  https://doi.org/10.1007/s002170050486 CrossRefGoogle Scholar
  41. Evidente A, Cabras A, Maddau L, Marras F, Andolfi A, Melck D, Motta A (2006) Viridenepoxydiol, a new penta substituted oxiranyldecene produced by Trichoderma viride. J Agric Food Chem 54:6588–6592.  https://doi.org/10.1021/jf060713m CrossRefPubMedGoogle Scholar
  42. Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2H-pyran-2- one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960.  https://doi.org/10.1021/jf034708j CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel G (2004) Proton transfer reaction-mass spectrometry as a technique to measure volatile emissions of Muscodor albus. Plant Sci 166:1471–1477CrossRefGoogle Scholar
  44. Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964CrossRefGoogle Scholar
  45. Fisher DJ, Brown G, Holloway PJ (1978) Influence of growth medium on surface and wall lipid of fungal spore. Phytochemistry 17:85–89CrossRefGoogle Scholar
  46. Forster-Fromme K, Jendrossek D (2010) Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Appl Microbiol Biotechnol 87(3):859–869CrossRefGoogle Scholar
  47. Francis GJ, Wilson PF, Milligan DB, Langford VS, Geo MEMJ (2007) VOC: a SIFT-MS method for the analysis of small linear hydrocarbons of relevance to oil exploration. Int J Mass Spectrom 268:38–46.  https://doi.org/10.1016/j.ijms.2007.08.005 CrossRefGoogle Scholar
  48. Fukuda T, Uchida R, Ohte S, Inoue H, Yamazaki H, Matsuda D, Nonaka K, Masuma R, Katagiri T, Tomoda H (2012) Trichocyalides A and B, new inhibitors of alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblasts, produced by Trichoderma sp. FKI-5513. J Antibiot 65:565–569.  https://doi.org/10.1038/ja.2012.70 CrossRefPubMedGoogle Scholar
  49. Ganassi S, De Cristofaro A, Grazioso P, Altomare C, Logrieco A, Sabatini MA (2007) Detection of fungal metabolites of various Trichoderma species by the aphid Schizaphis graminum. Entomol Exp Appl 122:77–86.  https://doi.org/10.1111/j.1570-7458.2006.00494.x CrossRefGoogle Scholar
  50. Gardner JW, Bartlett PN (1992) Sensors and Sensory Systems for an Electronic Nose. In: Kluwer Academic Publisher. MA, NorwellGoogle Scholar
  51. Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macias-Rodriguez L et al (2015) The volatile 6-pentyl- 2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. New Phytol 209:1496–1512.  https://doi.org/10.1111/nph.13725 CrossRefPubMedGoogle Scholar
  52. Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426.  https://doi.org/10.1021/np0204390 CrossRefPubMedGoogle Scholar
  53. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818.  https://doi.org/10.1126/science.1185383 CrossRefPubMedGoogle Scholar
  54. Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of green house tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology & Biochemistry 39:1968–1977CrossRefGoogle Scholar
  55. Grawert T, Groll M, Rohdich F, Bacher A, Eisenreich W (2011) Biochemistry of the non-mevalonate isoprenoid pathway. Cell Mol Life Sci 68(23):3797–3814.  https://doi.org/10.1007/s00018-011-0753-z CrossRefPubMedGoogle Scholar
  56. Gressler V, Colepicolo P, Pinto E (2009) Useful strategies for algal volatile analysis. Curr Anal Chem 5:271–292.  https://doi.org/10.2174/157341109788680255 CrossRefGoogle Scholar
  57. Grigoriev IV, Cullen D, Hibbett D, Goodwin SB, Jeffries TW, Kuske C, Magnuson J, Spatafora J (2011) Fueling the future with fungal genomics. Mycology 2:192–209.  https://doi.org/10.1080/21501203.2011.584577 CrossRefGoogle Scholar
  58. Hansson D (2013) Structure and biosynthesis of fungal secondary metabolites. DisserationGoogle Scholar
  59. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56.  https://doi.org/10.1038/nrmicro797 CrossRefGoogle Scholar
  60. Herrmann A (2010) The chemistry and biology of volatiles. Wiley, ChichesterCrossRefGoogle Scholar
  61. Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–189.  https://doi.org/10.1094/PHYTO-96-0186 CrossRefPubMedGoogle Scholar
  62. Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 173–184Google Scholar
  63. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10CrossRefGoogle Scholar
  64. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324CrossRefGoogle Scholar
  65. Howell CR, Stipanovic R, Lumsden R (1993) Antibiotic production by strains of Gliocladium virens and its relation to biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441CrossRefGoogle Scholar
  66. Humphris SN, Wheatley RE, Bruce A (2001) The effect of specific volatiles organic compounds produced by Trichoderma spp. on the growth of wood decay basidiomycetes. Holzforschung.  https://doi.org/10.1515/HF.2001.038
  67. Hung R, Samantha L, Joan WB, Gareth WG (2012) Arabidopsis Thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26.  https://doi.org/10.1016/j.funeco.2012.09.005 CrossRefGoogle Scholar
  68. Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26CrossRefGoogle Scholar
  69. Hynes J, Muller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57.  https://doi.org/10.1007/s10886-006-9209-6 CrossRefPubMedGoogle Scholar
  70. Insam H, Seewald SA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213.  https://doi.org/10.1007/s00374-010-0442-3 CrossRefGoogle Scholar
  71. Jassim HK, Foster HA, Fairhurst CP (1990) Biological control of Dutch elm disease: larvicidal activity of Trichoderma harzianum, T. polysporum and Scytalidium lignicola in Scolytus scolytus and S. multistriatus reared in artificial culture. Ann Appl Biol 117:187–196.  https://doi.org/10.1111/j.1744-7348.1990.tb04206.x CrossRefGoogle Scholar
  72. Jelen H, Błaszczyk L, Chełkowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13:589–600.  https://doi.org/10.1007/s11557-013-0942-2 CrossRefGoogle Scholar
  73. Jelen HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267.  https://doi.org/10.1046/j.1472-765X.2003.01305.x CrossRefPubMedGoogle Scholar
  74. Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825.  https://doi.org/10.1007/s10886-013-0325-9 CrossRefPubMedGoogle Scholar
  75. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012.  https://doi.org/10.1007/s00253-008-1760-3 CrossRefPubMedGoogle Scholar
  76. Keller NP, Turner G, Joan WB (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947.  https://doi.org/10.1038/nrmicro1286 CrossRefPubMedGoogle Scholar
  77. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88CrossRefGoogle Scholar
  78. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unravelling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544CrossRefGoogle Scholar
  79. Keswani C (2015) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Idea.  https://doi.org/10.5281/zenodo.15571
  80. Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52Google Scholar
  81. Keszler A, Forgacs E, Kotai L, Vizcaıno JA, Monte E, Garcıa-Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid phase extraction and gas chromatography-mass spectrometry. J Chromatogr Sci 38:421–424CrossRefGoogle Scholar
  82. Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193.  https://doi.org/10.1080/10408440802291497 CrossRefPubMedGoogle Scholar
  83. Kottb M, Gigolashvili T, Grosskinsky DK, Piechulla B (2015) Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol 6:995.  https://doi.org/10.3389/fmicb.2015.00995 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kramer R, Abraham WR (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37.  https://doi.org/10.1007/s11101-011-9216-2 CrossRefGoogle Scholar
  85. Kubicek CP, Harman GE (1998) Trichoderma and Gliocladium, volume 2: enzymes, biological control and commercial applications. Taylor and Francis, LondonGoogle Scholar
  86. Kues U, Navarro-Gonzales M (2009) Communication of fungi on individual, species, kingdom, and above kingdom levels. In: Anke T, Weber D (eds) The Mycota XV physiology and genetics. Springer-Verlag, Berlin/Heidelberg, p 79e106Google Scholar
  87. Laatsch H (2007) AntiBase 2007: the natural product identifier. Wiley, VCH Verlag GmbHGoogle Scholar
  88. Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014.  https://doi.org/10.1016/j.procbio.2005.12.007 CrossRefGoogle Scholar
  89. Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197:723–727CrossRefGoogle Scholar
  90. Lee S et al (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3(1):7. http://fungalbiolbiotech.biomedcentral.com/articles/10.1186/s40694-016-0025-7CrossRefGoogle Scholar
  91. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2013) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748.  https://doi.org/10.1093/nar/gkt1250 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) VOC: a database of microbial volatiles. Nucleic Acids Res 42:744–748.  https://doi.org/10.1093/nar/gkt1250 CrossRefGoogle Scholar
  93. Li GH, Yang ZS, Zhao PJ, Zheng X, Luo SL, Sun R, Niu XM, Zhang KQ (2011) Three new acorane sesquiterpenes from Trichoderma sp. YMF1. 02647. Phytochem Lett 4:86–88.  https://doi.org/10.1016/j.phytol.2010.09.005 CrossRefGoogle Scholar
  94. Lindinger W, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–375CrossRefGoogle Scholar
  95. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417.  https://doi.org/10.1146/annurev-phyto-073009-114314 CrossRefPubMedGoogle Scholar
  96. Luo SL, Lo CT, Shibu MA, Leu YL, Jen BY, Peng KC (2009) Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J Agric Food Chem 57:7288–7292.  https://doi.org/10.1021/jf901405c CrossRefGoogle Scholar
  97. Lutz MP, Wenger S, Maurhofer M, Defago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455CrossRefGoogle Scholar
  98. Mannina L, Segre AL, Ritieni A, Fogliano V, Vinale F, Randazzo G, Maddau L, Bottalico A (1997a) A new fungal growth inhibitor from Trichoderma viride. Tetrahedron 53:3135–3144.  https://doi.org/10.1016/S0040-4020(97)00024-0 CrossRefGoogle Scholar
  99. Mannina L, Segre AL, Ritieni A, Fogliano V, Vinale F, Randazzo G, Maddau L, Bottalico AA (1997b) New fungal growth inhibitor from Trichoderma viride. Tetrahedron 53:3135–3144CrossRefGoogle Scholar
  100. Martínez-Medina A, Roldán A, Pascual JA (2011) Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and Fusarium wilt biocontrol. Appl Soil Ecol 47:98–105.  https://doi.org/10.1016/j.apsoil.2010.11.010 CrossRefGoogle Scholar
  101. Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108.  https://doi.org/10.3389/fpls.2012.00108 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Matysik S, Herbarth O, Mueller A (2009) Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents. Chemosphere 76:114–119CrossRefGoogle Scholar
  103. Mercier J, Manker D (2005) Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot 24:355–362CrossRefGoogle Scholar
  104. Meruva NK, Penn JM, Farthing DE (2004) Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of flight mass spectrometry. J Ind Microbiol Biotechnol 31:482–488.  https://doi.org/10.1007/s10295-004-0175-0 CrossRefPubMedGoogle Scholar
  105. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854.  https://doi.org/10.1111/j.1462-2920.2008.01805.x CrossRefPubMedPubMedCentralGoogle Scholar
  106. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe SYMBIOSIS – applied facets. Springer, New Delhi, pp 111–125Google Scholar
  107. Moffatt JS, Bu’Lock JD, Yuen TH (1969) Viridiol, a steroid-like product from Trichoderma viride. J Chem Soc Chem Commun 14, 839Google Scholar
  108. Monreal CM, Chahal A, Rowland O, Smith M, Schnitzer M (2014) Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum. II: production of intracellular and extracellular lipids. J Environ Sci Health, Part B 49:955–965.  https://doi.org/10.1080/03601234.2014.951583 CrossRefGoogle Scholar
  109. Monreal CM et al (2016) Chemical characterization of fatty acids , alkanes , N-Diols and Alkyl Esters produced by a mixed culture of Trichoderma koningii and Penicillium janthinellum Grown Aerobically on Undecanoic Acid , potato dextrose and their mixture. J Environ Sci Health, Part B 51(5):326–339.  https://doi.org/10.1080/03601234.2015.1128746 CrossRefGoogle Scholar
  110. Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28:42–49.  https://doi.org/10.1264/jsme2.ME12085 CrossRefPubMedGoogle Scholar
  111. Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231e236Google Scholar
  112. Nieto-jacobo MF, Steyaert JM, Salazar-badillo FB (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:1–18.  https://doi.org/10.3389/fpls.2017.00102 CrossRefGoogle Scholar
  113. Oerke EC, Dehne HW (2004) Safeguarding production – losses in major crops and the role of crop protection. Crop Prot 23:275–285.  https://doi.org/10.1016/j.cropro.2003.10.001 CrossRefGoogle Scholar
  114. Oprean R, Oprean L, Tamas M, Sandulescu R, Roman L (2001) Essential oils analysis II. Mass spectra identification of terpene and phenylpropane derivatives. J Pharm Biomed Anal 24(5–6):1163–1168CrossRefGoogle Scholar
  115. Parker SR, Hill RA, Cutler HG (1999) Spectrum of activity of antifungal natural products and their analogs. In: Cutler HG, Cutler SJ (eds) Biologically active natural products: agrochemicals. CRC Press, Boca Raton, pp 175–183Google Scholar
  116. Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812.  https://doi.org/10.1111/pce.12254 CrossRefPubMedGoogle Scholar
  117. Pinches SE (2007) Apps, P.; Production in food of 1, 3-pentadiene and styrene by Trichoderma species. Int J Food Microbiol 116:182–185.  https://doi.org/10.1016/j.ijfoodmicro.2006.12.001 CrossRefPubMedGoogle Scholar
  118. Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24.  https://doi.org/10.1016/j.chroma.2007.06.021 CrossRefPubMedGoogle Scholar
  119. Qualley AV, Dudareva N (2009) Metabolomics of plant volatiles. Methods Mol Biol 553:329–343.  https://doi.org/10.1007/978-1-60327-563-7_17 CrossRefPubMedGoogle Scholar
  120. Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E (2017) Root symbionts: powerful drivers of plant above- and belowground indirect defenses. Insect Sci 24(6):947–960.  https://doi.org/10.1111/1744-7917.12464 CrossRefPubMedGoogle Scholar
  121. Reino JL, Guerro RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123.  https://doi.org/10.1007/s11101-006-9032-2 CrossRefGoogle Scholar
  122. Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R et al (2005) The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760.  https://doi.org/10.1016/j.fgb.2005.04.009 CrossRefPubMedGoogle Scholar
  123. Rohmer M (1999) The mevalonate-independent methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis, including carotenoids. Pure Appl Chem 71(12):2279–2284.  https://doi.org/10.1351/pac199971122279 CrossRefGoogle Scholar
  124. Rowan DD (2011) Volatile Metabolites. Metabolites 1(1):41–63.  https://doi.org/10.3390/metabo1010041 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Ryu C, Farag MA, Hu C, Reddy MS, Wei H, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932.  https://doi.org/10.1073/pnas.0730845100 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Senthilmohan ST, Mcewan MJ, Wilson PF, Milligan DB, Freeman CG (2001) Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. Redox Rep 6:185–187CrossRefGoogle Scholar
  127. Scotter JM, Langford VS, Wilson PF, Mcewan MJ, Chambers ST (2005) Real-time detection of common micro- bial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J Microbiol Methods 63:12–134CrossRefGoogle Scholar
  128. Schirmer A, Rude MA, Li X, Popova E, Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–567.  https://doi.org/10.1126/science.1187936 CrossRefPubMedGoogle Scholar
  129. Schnurer J, Olsson J, Borjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217.  https://doi.org/10.1006/fgbi.1999.1139 CrossRefPubMedGoogle Scholar
  130. Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microb Technol 40:961–968.  https://doi.org/10.1016/j.enzmictec.2006.07.041 CrossRefGoogle Scholar
  131. Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52(3):324–331.  https://doi.org/10.1002/jobm.201100145 CrossRefPubMedGoogle Scholar
  132. Sharma V, Bhandari P, Singh B, Bhatacharya A, Shanmugam V (2013) Chitinase expression due to reduction in fusaric acid level in an antagonistic Trichoderma harzianum S17TH. Indian J Microbiol 53(2):214–220.  https://doi.org/10.1007/s12088-012-0335-2 CrossRefPubMedGoogle Scholar
  133. Sharma V, Salwan R, Sharma PN (2016) Differential response of extracellular proteases of Trichoderma harzianum against fungal phytopathogens. Curr Microbiol 73(3):419–425.  https://doi.org/10.1007/s00284-016-1072-2 CrossRefGoogle Scholar
  134. Sharma V, Salwan R, Sharma PN, Gulati A (2017a) Integrated translatome and proteome : approach for accurate portraying of widespread multifunctional aspects of Trichoderma. Front Microbiol 8:1–13.  https://doi.org/10.3389/fmicb.2017.01602 CrossRefGoogle Scholar
  135. Sharma V, Salwan R, Sharma PN (2017b) The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol Mol Plant Pathol 100:884–806.  https://doi.org/10.1016/j.pmpp.2017.07.005 CrossRefGoogle Scholar
  136. Sharma V, Salwan R, Sharma PN, Kanwar SS (2017c) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. Int J Biol Macromol 95:72–79.  https://doi.org/10.1016/j.ijbiomac.2016.11.042 CrossRefPubMedGoogle Scholar
  137. Sharma V, Salwan R, Sharma PN (2017d) The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol Mol Plant Pathol 100:84–96.CrossRefGoogle Scholar
  138. Sharma V, Salwan R, Shanmugam V (2018a) Unraveling the multilevel aspects of least explored plant beneficial Trichoderma saturnisporum isolate GITX-Panog (C). Eur J Plant Pathol: (C)Google Scholar
  139. Sharma V, Salwan R, Shanmugam V (2018b) Molecular characterization of β-endoglucanase from antagonistic Trichoderma saturnisporum isolate GITX-Panog (C) induced under mycoparasitic conditions. Pesticide Biochemistry and Physiology 149:73–80CrossRefGoogle Scholar
  140. Simon A, Dunlop R, Ghisalberti E, Sivasithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264.  https://doi.org/10.1016/0038-0717(88)90050-8 CrossRefGoogle Scholar
  141. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, SingaporeGoogle Scholar
  142. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, WallingtonGoogle Scholar
  143. Sivasithamparam K, Ghisalberti E (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek C, Harman GE (eds) Trichoderma and Gliocladium basic biology, taxonomy and genetics. Taylor & Francis, London, pp 139–191Google Scholar
  144. Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819.  https://doi.org/10.3390/ijms14059803 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699.  https://doi.org/10.1111/j.1469-8137.2010.03523.x CrossRefPubMedGoogle Scholar
  146. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193.  https://doi.org/10.1016/j.mimet.2010.03.011 CrossRefPubMedGoogle Scholar
  147. Strobel G (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522.  https://doi.org/10.1007/s10295-006-0090-7 CrossRefPubMedGoogle Scholar
  148. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus a novel endophytic fungus. Microbiology 147:2943e2950.  https://doi.org/10.1099/00221287-147-11-2943 CrossRefGoogle Scholar
  149. Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 76:3850–3862.  https://doi.org/10.1128/AEM.00436-10 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Sunesson A-L, Vaes WHJ, Nilsson C-A, Blomquist GR, Andersson B, Carlson R (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918PubMedPubMedCentralGoogle Scholar
  151. Szabo M, Csepregi K, Galber M, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63:121–128.  https://doi.org/10.1016/j.biocontrol.2012.06.013 CrossRefGoogle Scholar
  152. Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. Bull Chem Soc Ethiop 17:185–190Google Scholar
  153. Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8- cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914.  https://doi.org/10.1007/s00248-010-9759-6 CrossRefPubMedGoogle Scholar
  154. Van Loon LC, Bakker PAHM, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483CrossRefGoogle Scholar
  155. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448.  https://doi.org/10.1016/j.pbi.2008.05.005 CrossRefGoogle Scholar
  156. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20.  https://doi.org/10.1016/j.bej.2007.05.012 CrossRefGoogle Scholar
  157. Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641.  https://doi.org/10.1128/AEM.01078-07 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10.  https://doi.org/10.1016/j.soilbio.2007.07.002 CrossRefGoogle Scholar
  159. Vos CMF, De Cremer K, Cammue BPA, De Coninck B (2015) The toolbox of Trichoderma spp. in biocontrol of Botrytis cinerea disease. Mol Plant Pathol 16:400–412.  https://doi.org/10.1111/mpp.12189 CrossRefPubMedGoogle Scholar
  160. Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids. Plant J 21(6):571–578CrossRefGoogle Scholar
  161. Warin I, Chaiyawat S, Chiradej C, Montree I, Sorwaporn K, Kan C (2009) Bioactive compound of antifungal metabolite from Trichoderma harzianum mutant strain for the control of anthracnose of chili (Capsicum annuum L). Philipp Agric Sci 92:392–397Google Scholar
  162. Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845Google Scholar
  163. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.  https://doi.org/10.1007/s00425-009-1076-2 CrossRefPubMedGoogle Scholar
  164. Wheatley R, Hackett C, Bruce A (1997) Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. Inhibitory to wood decay fungi. Int Biodeterior Biodegrad 39:199–205.  https://doi.org/10.1016/S0964-8305(97)00015-2 CrossRefGoogle Scholar
  165. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial fungal interactions. Antonie Van Leeuwenhoek 81:357–364.  https://doi.org/10.1023/A:1020592802234 CrossRefPubMedGoogle Scholar
  166. Wickel SM, Citron CA, Dickschat JS (2013) 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum. Eur J Org Chem 14:2906–2913.  https://doi.org/10.1002/ejoc.201300049 CrossRefGoogle Scholar
  167. Wilkes H, Kuhner S, Bolm C, Fischer T, Classen A, Widdel F, Rabus R (2003) Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem 34:1313–1323CrossRefGoogle Scholar
  168. Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446CrossRefGoogle Scholar
  169. Wintermans PCA, Bakker PAHM, Pieterse CMJ (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90:623–634CrossRefGoogle Scholar
  170. Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953CrossRefGoogle Scholar
  171. Yamamoto T, Izumi N, Ui H, Sueki A, Masuma R, Nonaka K, Hirose T, Sunazuka T, Nagai T, Yamada H, Omura S, Shiomi K (2012) Wickerols A and B: novel anti-influenza virus diterpenes produced by Trichoderma atroviride FKI-3849. Tetrahedron 68:9267–9271.  https://doi.org/10.1016/j.tet.2012.08.066 CrossRefGoogle Scholar
  172. Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242CrossRefGoogle Scholar
  173. Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y, Pieterse CMJ (2015) Rhizobacterial volatiles and photosynthesis- related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant Journal 84:309–322CrossRefGoogle Scholar
  174. Zeppa G, Allegrone G, Barbeni M, Guarda PA (1990) Variability in the production of volatile metabolites by Trichoderma viride. Ann Microbiol 40:171–176Google Scholar
  175. Zhang H, Xie X, Kim M, Kornyeyev DA, Holaday S, Pare P (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273.  https://doi.org/10.1111/j.1365-313X.2008.03593.x CrossRefPubMedGoogle Scholar
  176. Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, Chen W, Li G (2014) Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 72:98–108.  https://doi.org/10.1016/j.biocontrol.2014.02.018 CrossRefGoogle Scholar
  177. Zhao L, Wang F, Zhang Y, Jiaojiao Z (2014) Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. J Basic Microbiol 54(1):115–124.  https://doi.org/10.1002/jobm.201400148 CrossRefGoogle Scholar
  178. Zogorski JS, Carter JM, Ivahnenko T, Lapham WW, Moran MJ, Rowe BL, Squillace PJ, Toccalino PL (2006) The quality of our nation’s waters e volatile organic compounds in the nation’s ground water and drinking-water supply wells. US Geol Surv Circ 1292:101Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Richa Salwan
    • 1
  • Nidhi Rialch
    • 2
  • Vivek Sharma
    • 3
  1. 1.College of Horticulture and ForestryNeriIndia
  2. 2.Division of Plant PathologyICAR-CISH RahmankherLucknowIndia
  3. 3.University Centre for Research and DevelopmentChandigarh UniversityMohaliIndia

Personalised recommendations