Secondary Metabolites of Non-pathogenic Fusarium: Scope in Agriculture

  • Laith Khalil Tawfeeq Al-Ani


Non-pathogenic Fusarium are spread in different environments such as in soil, in rhizosphere and in planta. Non-pathogenic Fusarium secret many chemically diverse secondary metabolites for competing with other soil microorganisms. The role of secondary metabolites is working together with other modes of action. These mechanisms were comprised of mycoparasitism, antibiotic, competition, induce the resistance and defences plant, and change in plant chemistry, biofertilizer, and production the beneficial enzymes. These features are very helpful in the scope of agriculture. These can be effectively utilized as an eco-friendly alternative to chemical pesticides for the management of phytopathogens. Interestingly, non-pathogenic Fusarium also behaves like an endophyte, entering the host system and inducing the defence response. Finally, the importance of application of non-pathogenic Fusarium (or its secondary metabolites) over chemical pesticides is far outreaching and comparatively more beneficial.


Fusarium Biological control Phytopathogens Secondary metabolites 


  1. Alabouvette C (1990) Biological control of Fusarium wilt pathogens in suppressive soils. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 27–43Google Scholar
  2. Al-Ani LKT (2006) Induce resistance against cucumber mosaic virus by pseudomonas fluorescens migula. MSc Department of Plant Protection, College of Agriculture, University of Baghdad, Baghdad, Iraq, pp 90Google Scholar
  3. Al-Ani LKT (2010) Biological control of Fusarium wilt of banana by non pathogenic Fusarium oxysporum. PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM, June, p 10Google Scholar
  4. Al-Ani LKT (2017a) PGPR: A good step to control several of plant pathogens. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR Research. CABI, UK, pp 398–410Google Scholar
  5. Al-Ani LKT (2017b) Potential of utilizing biological and chemical agents in the control of Fusarium wilt of banana. PhD, School of Biology Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia, p 259Google Scholar
  6. AL-Ani LKT (2018a) Trichoderma: beneficial role in sustainable agriculture by plant disease management. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response, Microorganisms for sustainability, vol 5. Springer, Singapore, pp 105–126Google Scholar
  7. AL-Ani LKT (2018b) Trichoderma from extreme environments: physiology, diversity, and antagonistic activity. In: Egamberdieva D, Birkeland N-K, Panosyan H, Li W-J (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability. Springer, Singapore, pp 388–403Google Scholar
  8. AL-Ani LKT (2019a) The importance of endophytic fungi from the medicinal plant: Diversity, natural bioactive compounds, and control of plant pathogens. In: Egamberdieva D et al (eds) Medically important plant biomes source of secondary metabolites. Springer, Singapore, (In Press)Google Scholar
  9. AL-Ani LKT (2019b) A patent survey on Trichoderma spp. (from 2007-2017). In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)Google Scholar
  10. AL-Ani LKT (2019c) Entomopathogenic fungi in intellectual property and using in biotechnology. In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)Google Scholar
  11. AL-Ani LKT (2019d) Recent Patents on Endophytic Fungi and their International Market. In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)Google Scholar
  12. AL-Ani LKT (2019e) Bioactive secondary metabolites of trichoderma spp. for efficient management of phytopathogens. In: Singh HB, Keswani C, Reddy MS, Royano ES, García-Estrada C (eds) Secondary metabolites of plant growth promoting rhizomicroorganisms - discovery and applications. Springer, Singapore (In Press)Google Scholar
  13. Al-Ani RA, Al-Ani LKT (2011) Induced of systemic resistance in cucumber plants against Cucumber mosaic virus (CMV) by Pseudomonas fluorescens Migula. Arab Journal of Plant Protection 29:36–42Google Scholar
  14. Al-Ani LKT, Albaayit SFA (2018a) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). International conference on Research in Education & Science, ICRES April 28 – May 1, Marmaris, Turkey, pp 271 (Abstract)Google Scholar
  15. Al-Ani LKT, Albaayit SFA (2018b) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). The Eurasia Proceedings of Science. Technology, Engineering & Mathematics (EPSTEM) 2:35–38Google Scholar
  16. Al-Ani LKT, Negim E-S, Mohammed AM, Salleh B, Saleh MI (2012) Antifungal activity of novel Binary grafting polymers. 1st USM – KAZNU International Conference on: Challenges of Teaching and Chemistry Research in Institutions of Higher Learning, 11-13 July, p 44.Google Scholar
  17. Al-Ani LKT, Salleh B, Mohammed AM, Ghazali AHA, Al-Shahwany AW, Azuddin NF (2013a) Biocontrol of Fusarium wilt of Banana by Non-pathogenic Fusarium spp. International symposium on tropical fungi, ISTF, IPB International Convention Center, Bogor, Indonesia; 09/2013, pp 50–51Google Scholar
  18. Al-Ani LKT, Salleh B, Ghazali AHA (2013b) Biocontrol of fusarium wilt of banana by Trichoderma spp. 8th PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM, 5–6 June.Google Scholar
  19. Al-Ani LKT, Yonus MI, Mahdii BA, Omer MA, Taher JK, Albaayit SFA, Al-Khoja SB (2018) First record of use Fusarium proliferatum fungi in direct treatment to control the adult of wheat flour Tribolium confusum, as well as, use the entomopathogenic fungi Beauveria bassiana. Ecology, Environment and Conservation 24(3):29–34Google Scholar
  20. Al-Ani LKT, Mohammed AM, Ibrahim NF, Azuddin NF, Aguilar-Marcelino L (2019) Biological control of Fusarium oxysporum f. sp. cubense tropical race 4 in vivo by using three species of Trichoderma. Arc Phytopathol Plant Protect (In press)Google Scholar
  21. Altomare C, Perrone G, Zonno MC, Evidente A, Pingue R, Fanti F, Polonelli L (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63:1131–1135PubMedGoogle Scholar
  22. Attitalla IH, Mansour SE, Mohamed WS, Al-Ani LKT, Mohammed AM, Faturi MY, Balal IAA, El-Maraghy SSM (2010a) Influence of aspergillus flavus and aspergillus terreus on the protein value of the two varieties of peanut grains. International conference, International Mycotoxin Conference, MycoRed, Penang –Malaysia, 1-4 Dec (177)Google Scholar
  23. Attitalla IH, Laith KA, Nasib MA, Balal IAA, Zakaria M, El-Maraghy SSM, Karim SR (2010b). Screening of Fungi Associated With Commercial Grains and Animal Feeds in Al-Bayda Governorate, Libya. World Appl Sci J 9(7):746–756Google Scholar
  24. Bao JR, Lazarovits G (2002) Evaluation of three procedures for recovery of GUS enzyme and colony forming units of a nonpathogenic strain of Fusarium oxysporum 70T01, from inoculated tomato roots. Can J Plant Pathol 24:340–348Google Scholar
  25. Barik BP, Tayung K, Jagadev PN, Dutta SK (2010) Phylogenetic placement of an endophytic fungus Fusarium oxysporum isolated from Acorus calamus rhizomes with antimicrobial activity. Eur J Biol Sci 2:8–16Google Scholar
  26. Bartelt RJ, Wicklow DT (1999) Volatiles from Fusarium verticillioides (sacc.) Nirenb. And their attractiveness to nitidulid beetles. J Agric Food Chem 47:2447–2454PubMedGoogle Scholar
  27. Belgrove A, Steinberg C, Viljoen A (2011) Evaluation of nonpathogenic Fusarium oxysporum and Pseudomonas fluorescens for Panama disease control. Plant Dis 95:951–959PubMedGoogle Scholar
  28. Benhamou N, Garand C (2001) Cytological analysis of defence-related mechanisms induced in pea root tissue in response to colonization by non-pathogenic Fusarium oxysporum Fo47. Phytopathology 91:730–740PubMedGoogle Scholar
  29. Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68(8):4044–4060PubMedPubMedCentralGoogle Scholar
  30. Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. International Microbiology 7:249–260PubMedGoogle Scholar
  31. Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206Google Scholar
  32. Bitas V, Kang S (2012) Fusarium oxysporum produces volatile organic compounds that affect the growth and disease defense of Arabidopsis thaliana. APS annual meeting August 4–8 Providence, USA, Poster Session: MPMI-Fungi, p 588Google Scholar
  33. Bitas V, McCartney N, Li N, Demers J, Kim JE, Kim HS, Brown KM, Kang S (2015) Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol 6:1248. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Bogner CW, Kamdem RST, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FMW, Schoutencorresponding A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10(1):175–188. CrossRefPubMedGoogle Scholar
  35. Burgess LW (1981) General ecology of the Fusaria. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 225–235Google Scholar
  36. Campos FF, Johann S, Cota BB, Alves TMA, Rosa LH, Caligiorne RB, Cisalpino PS, Rosa CA, Zani CL (2011) Antifungal activity of trichothecenes from Fusarium sp. against clinical isolates of Paracoccidioides brasiliensis. Mycoses 54:122–129Google Scholar
  37. Campos FF, Sales Júnior PA, Romanha AJ, Araújo MSS, Siqueira EP, Resende JMR, Alves TMA, Martins-Filho AO, Santos VL, Rosa CA, Zani CL, Costa BB (2015) Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem Inst Oswaldo Cruz 110:65–74. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cao LX, Yon JL, Zhao SN (2002) Endophyte fungi from Musa acuminata leaves and roots in South China. World J Microbiol Biotechnol 18:169–171Google Scholar
  39. Chakravarthi BVSK, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33:259–267PubMedGoogle Scholar
  40. Cohen BA, Amsellem Z, Lev-Yadun S, Gressel J (2002a) Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species. Ann Bot 90:567–578PubMedPubMedCentralGoogle Scholar
  41. Cohen BA, Amsellem Z, Maor R, Sharon A, Gressel J (2002b) Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology 92:590–596PubMedGoogle Scholar
  42. Costa LSAS (2014) Volatiles produced by microbiota from Meloidogyne exigua egg masses and plant volatile emission in response to single and dual infestations with spider mite and nematode. Tese (Doutorado em Agronomia/Fitopatologia) – Universidade Federal de Lavras, Lavras, p 94Google Scholar
  43. Couteaudier Y, Alabouvette C (1990) Quantitative comparison of Fusarium oxysporum competitiveness in relation with carbon utilization. FEMS Microbiology 74:261–268Google Scholar
  44. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920PubMedGoogle Scholar
  45. Dababat AEA, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9(6):771–776Google Scholar
  46. Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7(19):3505–3510Google Scholar
  47. Demers JE, Gugino BK, Jiménez-Gasco MM (2015) Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl Environ Microbiol 81:81–90. CrossRefPubMedGoogle Scholar
  48. Deng BV, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143. CrossRefGoogle Scholar
  49. Di X, Takken FL, Tintor N (2016) How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Front Plant Sci 7:170PubMedPubMedCentralGoogle Scholar
  50. Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by non-pathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910Google Scholar
  51. Effendi H (2004) Isolation and structure elucidation of bioactive secondary metabolites of sponge-derived fungi collected from the Mediterranean Sea (Italy) and Bali Sea (Indonesia). Doctoral dissertation, Heinrich-Heine-Universität Düsseldorf, pp 106–127Google Scholar
  52. Elavarasi A, Gnanaprakash SR, Murugaiyan K (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asia Pac J Trop Biomed 2:1081–1085Google Scholar
  53. Evidente A, Amalfitano C, Pengue R, Altomare C (1999) High performance liquid chromatography for the analysis of Fusapyrone and Deoxyfusapyrone, two antifungal a-Pyrones from Fusarium semitectum. Nat Toxins 7:133–137PubMedGoogle Scholar
  54. Fravel DR, Larkin RP (2002) Reduction of Fusarium wilt of hydroponically-grow basil by fusarium oxysporum strain CS-20. Crop Prot 21:539–543Google Scholar
  55. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502Google Scholar
  56. Freeman S, Zveibil A, Vintal H, Maymon M (2002) Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in Cucurbits. Phytopathology 92:164–168PubMedGoogle Scholar
  57. Fuchs JG, Moënne-Loccoz Y, Défago G (1997) Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81:492–496PubMedGoogle Scholar
  58. Garret MK, Robinson PM (1969) A stable inhibitor of spore germination produced by fungi. Arch Microbiol 67:370–377Google Scholar
  59. Garyali S, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1380PubMedGoogle Scholar
  60. Gizi D, Stringlis IA, Tjamos SE, Paplomatas EJ (2011) Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biol Control 58:387–392. CrossRefGoogle Scholar
  61. Hervás A, Trapero-Casas JL, Jimenez-Diaz RM (1995) Induced resistance against Fusarium wilt of chickpea by nonpathogenic races of Fusarium oxysporum f. sp. ciceris and nonpathogenic isolates of F. oxysporum. Plant Dis 79:1110–1116Google Scholar
  62. Hidayat I, Radiastuti N, Rahayu G, Achmadi S, Okane I (2016) Three Quinine and Cinchonidine producing Fusarium species from Indonesia. Curr Res Environ Appl Mycol 6(1):20–34. CrossRefGoogle Scholar
  63. Himmelstein JC (2013) Mechanisms of disease suppression by a hairy vetch (Vicia villosa) cover crop on fusarium wilt of watermelon and the efficacy of the biocontrol actinovate. PhD thesis, University of Maryland, USA, p 158Google Scholar
  64. Honda N, Kawakubo Y (1998) Control of Fusarium basal rot of rakkyo by non pathogenic Fusarium moniliforme and Fusarium oxysporum. Soil Microorganisms 51:13–18Google Scholar
  65. Honda N, Kawakubo Y (1999) Isolation of nonpathogenic Fusarium fujikuroi and Fusarium oxysporum from rakkyo tissues and their colonization of rakkyo roots. Soil Microorganisms (Japan) 53:121–128Google Scholar
  66. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75Google Scholar
  67. Huang Z, Yang J, She Z, Lin Y (2012) A new isoflavone from the mangrove endophytic fungus Fusarium sp. (ZZF60). Nat Prod Res 26(1):11–15. CrossRefPubMedGoogle Scholar
  68. Ilic J, Cosic J, Vrandecic K, Dugalic K, Pranjic A, Martin J (2017) Influence of endophytic fungi isolated from symptomless weeds on cherry plants. Mycosphere 8(1):18–30. CrossRefGoogle Scholar
  69. Imazaki I, Kadota I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol Ecol 91:fiv098. CrossRefPubMedGoogle Scholar
  70. Ishimoto H, Fukushi Y, Tahara S (2004) Nonpathogenic Fusarium strains protect the seedlings of Lepidium sativum from Pythium ultimum. Soil Biol Biochem 36:409–414Google Scholar
  71. Jayaprakashvel M, Mathivanan N (2011) Management of plant diseases by microbial metabolites. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 237–265Google Scholar
  72. Kaur R, Kaur J, Singh RS (2010) Nonpathogenic Fusarium as a biological control agent. Plant Pathol J 9(3):79–91Google Scholar
  73. Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52Google Scholar
  74. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121. CrossRefGoogle Scholar
  75. Kuldau GA, Yates IE (2000) Evidence of Fusarium endophytes in cultivated and wild plants. In: Bacon CW, JJF W (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 85–117Google Scholar
  76. Kumar A, Ahmad A (2013) Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal Biotransformation 31(2):89–93Google Scholar
  77. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kurtz A (2010) Endophytic Fusarium oxysporum: Phylogeny and induced defense responses in banana plants against Radopholus similis. PhD dissertation, Rheinischen Friedrich-Wilhems-Universität, Saarbrücken, Deutschland, p 161Google Scholar
  79. Landa BB, Cachinero-Díaz JM, Lemanceau P, Jiménez-Díaz RM, Alabouvette C (2002) Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Can J Microbiol 48:971–985PubMedGoogle Scholar
  80. Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028PubMedGoogle Scholar
  81. Larkin RP, Fravel DR (1999) Mechanisms of action and dose response relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89:1152–1161PubMedGoogle Scholar
  82. Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by non-pathogenic Fusarium oxysporum and other microorganisms recovered from disease-suppressive soil. Phytopathology 86:812–819Google Scholar
  83. LeBlanc NR (2015) In uence of plant diversity and perennial plant identity on Fusarium communities in soil. PhD thesis, University of Minnesota, MN, USA, p 108Google Scholar
  84. Lemanceau P, Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent pseudomonas and nonpathogenic Fusarium. Crop Prot 10:279–286Google Scholar
  85. Leslie JF (1996) Genetic problems in some Fusarium species. Sydowia 48(1):32–43Google Scholar
  86. Leslie JF, Pearson CAS, Nelson PE, Toussoun TA (1990) Fusarium spp. from corn, sorghum and soybean fields in the Central and Eastern United States. Phytopathology 80:343–350Google Scholar
  87. Li N, Kang S (2018) Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants. Mycology. PubMedPubMedCentralGoogle Scholar
  88. Li CT, Li Y, Wang QJ, Sung CK (2008) Taxol production by Fusarium arthrosporioides isolated from yew, Taxus cuspidata. J Med Biochem 27(4):454–458. CrossRefGoogle Scholar
  89. Li P, Mou Y, Shan T, Xu J, Li Y, Lu S, Zhou L (2011a) Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis. Molecules 16:9003–9016. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Li P, Mao Z, Lou J, Li Y, Mou SY, Lu S, Peng Y, Zhou L (2011b) Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum. Molecules 16:10631–10644. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Li P, Lou J, Mou Y, Sun W, Shan T, Zhou L (2012) Effects of oligosaccharide elicitors from endophyitc Fusarium oxysporum Dzf17 on diosgenin accumulation in Dioscorea zingiberensis seedling cultures. J Med Plants Res 6:5128–5134. CrossRefGoogle Scholar
  92. Li P, Haiyu L, Jiajia M, Weibo S, Xiaohan W, Shiqiong L, Youliang P, Ligang Z (2014) Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures. Electron J Biotechnol 17(4):156–161. CrossRefGoogle Scholar
  93. Liu XL, Huang KH, Zhou JZ, Meng L, Wang Y, Zhang LX (2012) Identification and antibacterial characteristics of an endophytic fungus Fusarium oxysporum from Lilium lancifolium. Lett Appl Microbiol 55:399–406PubMedGoogle Scholar
  94. Louter JH, Edgington LV (1990) Indications of cross-protection against fusarium crown and root rot of tomato. Can J Plant Pathol 12:283–288Google Scholar
  95. Mandeel Q, Baker R (1991) Mechanisms involved in biological control of cucumber with strains of non-pathogenic Fusarium oxysporum. Phytopathology 81:462–469Google Scholar
  96. Mathivanan N, Murugesan K (1998) Isolation and purification of an antifungal metabolite from Fusarium chlamydosporum, a mycoparasite to Puccinia arachidis, the rust pathogen of groundnut. Indian J Exp Biol 37:98–101Google Scholar
  97. Mathivanan N, Murugesan K (1999) Isolation and purification of an antifungal metabolite from Fusarium chlamydosporum, a mycoparasite to Puccinia arachidis, the rust pathogen of groundnut. Indian J Exp Biol 37:98–101Google Scholar
  98. Mennan S, Aksoy HM, Ecevit O (2005) Antagonistic effect of Fusarium oxysporum on Heterodera cruciferae. J Phytopathol 153(4):221–225. CrossRefGoogle Scholar
  99. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11(4):844–854PubMedGoogle Scholar
  100. Minuto A, Migheli Q, Garibaldi A (1995) Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop Prot 14:221–226Google Scholar
  101. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis–applied facets. Springer, New Delhi, pp 111–125Google Scholar
  102. Mohammed AM, AL-Ani LKT, Bekbayeva L, Salleh B (2011) Biological control of Fusarium oxysporum f. sp. cubense by Pseudomonas fluorescens and BABA in vitro. World Appl Sci J 15(2):189–191Google Scholar
  103. Mohammed AM, Negim E-S, Al-Ani LKT, Salleh B, Saleh MI (2012) Utilization of amino-azines polymers as antifungal activity for banana. 1st USM – KAZNU International Conference on: Challenges of Teaching and Chemistry Research in Institutions of Higher Learning, 11-13 July, p 29Google Scholar
  104. Mohammed AM, Al-Ani LKT, Salleh B (2013) Potential management of Fusarium oxysporum f. sp. cubense, the banana wilt pathogen by using pseudomonas and beta-amino-butyric acid (BABA). International Symposium on Tropical Fungi, ISTF, IPB International Convention Center, Bogor. Indonesia 09(/2013):37Google Scholar
  105. Mohammed AM, Al-Ani LKT, Salleh B, Ghazali, AMA (2014) Determining plant growth promoting and biocontrol factor of bacterial culture media. The 3rd confernce on Pests management, Crop Protection Research Centre, Sudan, 3-4 February, p 103.Google Scholar
  106. Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Umashaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329. CrossRefPubMedGoogle Scholar
  107. Musavi SF, Dhavale A, Balakrishnan RM (2015) Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep Biochem Biotechnol 45:158–172. CrossRefPubMedGoogle Scholar
  108. Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, Khan S, Abdin Z (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res 6(10):2493–2499Google Scholar
  109. Nagao H, Coutaudier Y, Alabouvette C (1990) Colonization of sterilized soil and flax roots by strains of Fusarium oxysporum and Fusarium solani. Symbiosis, 9: 343–354Google Scholar
  110. Nawar LS (2016) Phytochemical and SDS-dissociated proteins of pathogenic and nonpathogenic Fusarium oxysporum isolates. Int J Chem Tech Res 9(6):165–172Google Scholar
  111. Nefzi A, Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Ammar N, Somai L, Hamada W, Haouala R, Daami-Remadi M (2018) Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. Af J Microbiol Res 12(7):152–170Google Scholar
  112. Nel B, Steinberg C, Labuschagne N, Viljoen A (2006a) The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55(2):216–223Google Scholar
  113. Nel B, Steinberg C, Labuschagne N, Viljoen A (2006b) Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants. Plant Pathol 55(2):207–216Google Scholar
  114. Nitao JK, Meyer SLF, Schmidt WF, Fettinger JC, Chitwood DJ (2001) Nematode antagonistic trichothecenes from Fusarium equiseti. J Chem Ecol 27:859–869PubMedGoogle Scholar
  115. Nor Azliza I, Hafizi R, Nurhazrati M, Salleh B (2014) Production of major mycotoxins by Fusarium Species isolated from Wild Grasses in Peninsular Malaysia. Sains Malaysiana 43(1):89–94Google Scholar
  116. Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici discussed in comparison to a non-pathogenic strain. New Phytol 141:497–510Google Scholar
  117. Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C (2003) Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and non-pathogenic strains of Fusarium oxysporum. Appl Environ Microbiolol 69:5453–5462Google Scholar
  118. Olivain C, Humbert C, Nahalkova J, Fatehi J, Haridon FL, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol 72(2):1523–1531PubMedPubMedCentralGoogle Scholar
  119. Pan F, Hou K, Gao F, Hu B, Chen Q, Wu W (2014) Peimisine and peiminine production by endophytic fungus Fusarium sp. isolated from Fritillaria unibracteata var. wabensis. Phytomedicine 21:1104–1109. CrossRefPubMedGoogle Scholar
  120. Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-D-glucoside. Fitoterapia 103:213–221. CrossRefPubMedGoogle Scholar
  121. Panina Y, Fravel DR, Baker CJ, Shcherbakova LA (2007) Biocontrol and plant pathogenic Fusarium oxysporum-induced changes in phenolic compounds in tomato leaves and roots. J Phytopathol 155:475–481Google Scholar
  122. Paparu P, Dubois T, Coyne D, Viljoen A (2007) Defense-related gene expression in susceptible and tolerant bananas (Musa spp.) following inoculation with non-pathogenic Fusarium oxysporum endophytes and challenge with Radopholus similis. Physiol Mol Plant Pathol 71:149–157Google Scholar
  123. Pu X, Xie B, Li P, Mao Z, Ling J, Shen H, Zhang J, Huang N, Lin B (2014) Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiol Lett 355(2):142–151. CrossRefPubMedGoogle Scholar
  124. Qureshi SA, Ruqqia VS, Ara J, Ehteshamul-Haque S (2012) Nematicidal potential of culture filtrates of soil fungi associated with rhizosphere and rhizoplane of cultivated and wild plants. Pak J Bot 44(3):1041–1046Google Scholar
  125. Raghunandan BL (2013) Evaluation of non-pathogenic Fusarium spp. for their biological control efficacy against Fusarium wilt of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai]. PhD thesis, University of Agricultural Sciences, Bengaluru, p 255Google Scholar
  126. Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J Basic Microbiol 45(3):230–235. CrossRefPubMedGoogle Scholar
  127. Rim SO, Lee JH, Choi WY, Hwang SK, Suh SJ, Lee IJ, Rhee IK, Kim JG (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15:809–814Google Scholar
  128. Rodrıguez A, Cabrera G, Godeas A (2006) Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J Appl Microbiol 100(3):575–586. CrossRefPubMedGoogle Scholar
  129. Schneider RW (1984) Effects of nonpathogenic strains Fusarium oxysporum on celery root infection by F. oxysporum f.sp. apii and a novel use of the Lineweaver-Burke double reciprocal plot technique. Phytopathology 74:646–653Google Scholar
  130. Shishido M, Miwa C, Usami T, Amemiya Y, Johnson KB (2005) Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072–1080PubMedGoogle Scholar
  131. Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122PubMedGoogle Scholar
  132. Siddiqui IA, Shaukat SS (2003) Non-pathogenic Fusarium solani represses the biosynthesis of nematicidal compounds in vitro and reduces the biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 37:109–114PubMedGoogle Scholar
  133. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, p 336. ISBN-13: 978-9811025754Google Scholar
  134. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, UK, p 408. ISBN-9781786390325Google Scholar
  135. Taufiq E, Hasim Soekarno BP, Surahman M (2017) Keefektifan Trichoderma sp. dan Fusarium non patogenik dalam mengendalikan penyakit busuk pucuk vanili berwawasan lingkungan. J Littri 23(1):18–25. CrossRefGoogle Scholar
  136. Tayung K, Jha DK (2010) Antimicrobial endophytic fungal assemblages inhabiting bark of Taxus baccata L. of Indo-Burma mega biodiversity hotspot. Indian J Microbiol 50(1):74–81PubMedPubMedCentralGoogle Scholar
  137. Tayung K, Barik BP, Jha DK, Deka DC (2011a) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2(3):203–213Google Scholar
  138. Tayung K, Barik BP, Jagadev PN, Mohapatra UB (2011b) Phylogenetic investigation of endophytic Fusarium strain producing antimicrobial metabolite isolated from Himalayan Yew Bark. Malays J Microbiol 7(1):1–6. CrossRefGoogle Scholar
  139. Tezuka N, Makino T (1991) Biological control of Fusarium wilt of strawberry by nonpathogenic fusarium oxysporum isolated from strawberry. Ann Phytopathol 57:506–511Google Scholar
  140. Thangavelu R, Jayanthi A (2009) RFLP analysis of rDNA-ITS regions of native non-pathogenic Fusarium oxysporum isolates and their field evaluation for the suppression of Fusarium wilt disease of banana. Australas Plant Pathol 38:13–21Google Scholar
  141. Thongkamngam T, Jaenaksorn T (2016) Efficacy of culture filtrate from Fusarium oxysporum F221-B against plant pathogenic fungi in vitro and Fusarium root rot and wilt disease in hydroponics. Int J Environ Agric Res 12(3):609–622Google Scholar
  142. Tsapikounis FA (2015) An integrated evaluation of mycoparasites from organic culture soils as biological control agents of sclerotia of Sclerotinia sclerotiorum in the Laboratory. BAO J Microbiol 1:001Google Scholar
  143. Validov SZ, Kamilova FD, Lugtenberg BJJ (2011) Monitoring of pathogenic and nonpathogenic Fusarium oxysporum strains during tomato plant infection. Microb Biotechnol 4(1):82–88PubMedGoogle Scholar
  144. Veloso J, Díaz J (2012) Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathol 61:281–288. CrossRefGoogle Scholar
  145. Veloso J, Alabouvette C, Olivain C, Flors V, Pastor V, García T, Díaza J (2016) Modes of action of the protective strain Fo47 in controlling verticillium wilt of pepper. Plant Pathol 65(6):997–1007. CrossRefGoogle Scholar
  146. Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 206:104–111. CrossRefPubMedGoogle Scholar
  147. Wang C, Lin Y, Lin Y, Chung W (2013) Modified primers for the identification of nonpathogenic Fusarium oxysporum isolates that have biological control potential against fusarium wilt of cucumber in Taiwan. PLoS One 8(6):e65093. CrossRefPubMedPubMedCentralGoogle Scholar
  148. Weikl F, Ghirardo A, Schnitzler JP, Pritsch K (2016) Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: effects of age, nutrient availability, and co-cultivation. Sci Rep 6:22152PubMedPubMedCentralGoogle Scholar
  149. Xia-Hong H (2007) Biocontrol of root rot disease in Vanilla. PhD thesis, University of Wolverhampton, UK, p 224Google Scholar
  150. Xu F, Tao W, Chang L, Guo L (2006) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67–73Google Scholar
  151. Yin C, Li P, Li H, Xu L, Zhao J, Shan T, Zhou L (2011) Enhancement of diosgenin production in Dioscorea zingiberensis seedling and cell cultures by beauvericin from the endophytic fungus Fusarium redolens Dzf2. J Med Plants Res 5:6550–6554. CrossRefGoogle Scholar
  152. Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229–230:361–370. CrossRefPubMedGoogle Scholar
  153. Zhang Q, Yang L, Zhang J, Wu M, Chen W, Jiang D, Li G (2015) Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil 392(1):101–114. CrossRefGoogle Scholar
  154. Zonno MC, Vurro M (2002) Inhibition of germination of Orobanche ramosa seeds by fusarium toxins. Phytoparasitica 30:519–524. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Laith Khalil Tawfeeq Al-Ani
    • 1
    • 2
  1. 1.Department of Plant Protection, College of Agriculture engineering scienceUniversity of BaghdadBaghdadIraq
  2. 2.School of Biology ScienceUniversiti Sains MalaysiaPulau PinangMalaysia

Personalised recommendations