Secondary Metabolites of Metarhizium spp. and Verticillium spp. and Their Agricultural Applications



Fungi have been recommended as agents for the biological control of insects for over a century, but their use remains particularly limited. As with numerous microorganisms, an entomopathogenic fungus from genera Metarhizium and Verticillium produces several metabolites. While these compounds are a conspicuous feature of the biology of the producing fungi, their roles in pathogenicity and other relations with their hosts and challenging microbes are not well understood. Insect pathogenic fungi are effective in controlling the occurrence of certain populations of soil pests with varied type of action and virulence. The fungi have evolved mechanisms for adhesion and recognition of host surface cues that help in direct adaptive response including the production of hydrolytic, assimilatory and detoxifying enzymes and additional metabolites that facilitate infection in insect pests. However, entomopathogenic fungi are a chief component of integrated pest management and form an integrated part of mycoinsecticide in agriculture. Entomopathogenic fungi are considered as an effective biocontrol agent against various plant pests. Therefore, in this book chapter, we discussed the role of entomopathogenic fungi Metarhizium and Verticillium for the management of the insect pests in agricultural ecosystem.


Secondary metabolites Mycoinsecticide Entomopathogenic fungi Biological control 



R.N. Yadav is highly thankful to the International Rice Research Institute India for financial support.


  1. Abdel-Wahab MA, Asolkar RN, Inderbitzin P, Fenical W (2007) Secondary metabolite chemistry of the marine-derived fungus Massarina sp. strain CNT 016. Phytochemistry 68(8):1212–1218PubMedPubMedCentralGoogle Scholar
  2. Adachi H, Doi H, Kasahara Y, Sawa R, Nakajima K, Kubota Y, Nomoto A (2015) Asteltoxins from the entomopathogenic fungus Pochonia bulbillosa 8-H-28. J Nat Prod 78(7):1730–1734PubMedGoogle Scholar
  3. Aldridge DC, Armstrong JJ, Speake RN, Turner WB (1967) The cytochalasins, a new class of biologically active mould metabolites. Chem Commun (Camb) 1:26–27Google Scholar
  4. Aldridge DC, Borrow A, Foster RG, Large MS, Spencer H, Turner WB (1972) Metabolites of Nectria coccinea. J Chem Soc Perkin Trans 1:2136–2141Google Scholar
  5. Amiri B, Ibrahim L, Butt TM (1999) Antifeedant properties of destruxins and their potential use with the entomogenous fungus Metarhizium anisopliae for improved control of crucifer pests. Biocontrol Sci Tech 9(4):487–498Google Scholar
  6. Andersson PF (2012) Secondary metabolites associated with plant disease, plant defense and biocontrol (Vol. 2012, No. 52)Google Scholar
  7. Angawi RF, Swenson DC, Gloer JB, Wicklow DT (2003) Lowdenic acid: a new antifungal polyketide-derived metabolite from a new fungicolous Verticillium sp. J Nat Prod 66(9):1259–1262PubMedGoogle Scholar
  8. Arai M, Yamamoto K, Namatame I, Tomoda H, Omura S (2003) New monordens produced by amidepsine-producing fungus Humicola sp. FO-2942. J Antibiol 56(6):526–532Google Scholar
  9. Aver WA, Peña-Rodriguez L (1987) Minor metabolites of Monocillium nordinii. Phytochemistry 26(5):1353–1355Google Scholar
  10. Ayer WA, Lee SP, Tsuneda A, Hiratsuka Y (1980) The isolation, identification, and bioassay of the antifungal metabolites produced by Monocillium nordinii. Can J Microbiol 26(7):766–773Google Scholar
  11. Azumi M, Ishidoh KI, Kinoshita H, Nihira T, Ihara F, Fujita T, Igarashi Y (2008) Aurovertins F–H from the entomopathogenic fungus Metarhizium anisopliae. J Nat Prod 71(2):278–280PubMedGoogle Scholar
  12. Bal Tembe S, Kundu S, Roy K, Hiremath CP, Gole G, de Souza EP, Pillmoor JB (1999) Activity of the ilicicolins against plant pathogenic fungi. Pest Manag Sci 55(6):645–647Google Scholar
  13. Bloch P, Tamm C, Bollinger P, Petcher TJ, Weber HP (1976) Pseurotin, a new metabolite of Pseudeurotium ovalis stolk having an unusual hetero-spirocyclic system. Helv Chim Acta 59(1):133–137PubMedGoogle Scholar
  14. Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GN (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51(7):891–898PubMedGoogle Scholar
  15. Borel JF, Feurer C, Magnee C, Stähelin H (1977) Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 32(6):1017PubMedPubMedCentralGoogle Scholar
  16. Brackenbury J (1999) Regulation of swimming in the Culex pipiens (Diptera, Culicidae) pupa: kinematics and locomotory trajectories. J Exp Biol 202:2521PubMedGoogle Scholar
  17. Brackenbury J (2001) The vortex wake of the free-swimming larva and pupa of Culex pipiens (Diptera). J Exp Biol 204:1855–1867PubMedGoogle Scholar
  18. Broadway RM, Gary EH, Cornell Research Foundation, Inc (2000) Fungus and insect control with chitinolytic enzymes. US Patent 6,069,299Google Scholar
  19. Bu’Lock JD (1980) Mycotoxins as secondary metabolites. In: Steyn PS (ed) The biosynthesis of mycotoxins. Academic, New York, pp 1–16Google Scholar
  20. Cagnoli-Bellavita N, Ceccherelli P, Fringuelli R (1975) Ascochlorin: a terpenoid metabolite from Acremonium luzulae. Phytochemistry 14:807Google Scholar
  21. Cantin Sanz A, Sanz M, Del Pilar M, Castillo López M, Primo Millo J, Miranda Alonso MÁ, Primo Yufera E (1999) Isolation and synthesis of N-(2-methyl-3-oxodec-8-enoyl)-2-pyrroline and 2-(hept-5-enyl)-3-methyl-4-oxo-6, 7, 8, 8a-tetrahydro-4H-pyrrolo (2, 1-b)-3-oxazine, two new fungal metabolites with in vivo antijuvenile hormone and insecticidal activity. Eur J Org Chem 1:221–226Google Scholar
  22. Carollo CA, Calil ALA, Schiave LA, Guaratini T, Roberts DW, Lopes NP, Braga GU (2010) Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biol 114(5–6):473–480PubMedGoogle Scholar
  23. Cerenius L, Trörnqvist PO, Vey A, Johansson MW, Söderhäll K (1990) The effect of the fungal toxin destruxin E on isolated crayfish haemocytes. J Insect Physiol 36(10):785–789Google Scholar
  24. Champlin FR, Grula EA (1979) Noninvolvement of beauvericin in the entomopathogenicity of Beauveria bassiana. Appl Environ Microbiol 37(6):1122–1126PubMedPubMedCentralGoogle Scholar
  25. Charnley K, Richard MC, St. Leger RJ, Agriculture Genetics Company Ltd (1991) Preparations of protease enzymes derived from entomopathogenic fungi. US Patent 4,987,077Google Scholar
  26. Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins A and B: new cyclic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64(5):555–558PubMedGoogle Scholar
  27. Claydon N, Grove JF (1982) Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J Invertebr Pathol 40(3):413–418Google Scholar
  28. Colegate SM, Dorling PR, Huxtable CR (1979) A spectroscopic investigation of swainsonine: an α-mannosidase inhibitor isolated from Swainsona canescens. Aust J Chem 32(10):2257–2264Google Scholar
  29. Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5(1):75–97PubMedPubMedCentralGoogle Scholar
  30. Da Silva WOB, Santi L, Scharank A, Vainstein MH (2010) Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol 144:10–15. CrossRefGoogle Scholar
  31. Deepa R, Manjunatha H, Krishna V, Kumara Swamy BE (2014) Evaluation of antimicrobial activity and antioxidant activity by electrochemical method of ethanolic extract of Pterocarpus marsupium Roxb Bark. J Biotechnol Biomater 4:166. CrossRefGoogle Scholar
  32. Delmotte P, Delmotte-Plaquee J (1953) A new antifungal substance of fungal origin. Nature 171(4347):344PubMedGoogle Scholar
  33. Dhaliwal GS, Arora R (1996) Principles of insect pest management. National Agricultural Technology Information Centre, LudhianaGoogle Scholar
  34. Doebler JA (2000) Effects of neutral ionophores on membrane electrical characteristics of NG108-15 cells. Toxicol Lett 114(1–3):27–38PubMedGoogle Scholar
  35. Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM (2002) Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 99:187–198PubMedGoogle Scholar
  36. Donzelli BGG, Krasnoff SB (2016) Molecular genetics of secondary chemistry in Metarhizium fungi. In: Advances in genetics, vol 94. Academic, Amsterdam, pp 365–436Google Scholar
  37. Dorling PR, Huxtable CR, Vogel P (1978) Lysosomal storage in Swainsona spp. toxicosis: an induced mannosidosis. Neuropathol Appl Neurobiol 4(4):285–295PubMedGoogle Scholar
  38. Dreyer DL, Jones KC, Molyneux RJ (1985) Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of indolizidine alkaloid swainsonine. J Chem Ecol 11(8):1045–1051PubMedGoogle Scholar
  39. Dreyfuss M, Härri E, Hofmann HEA, Kobel H, Pache W, Tscherter H (1976) Cyclosporin A and C. Eur J Appl Microbiol Biotechnol 3(2):125–133Google Scholar
  40. Ellestad GA, Evans RH Jr, Kunstmann MP (1969) Some new terpenoid metabolites from an unidentified Fusarium species. Tetrahedron 25(6):1323–1334PubMedGoogle Scholar
  41. Espada A, Dreyfuss MM (1997) Effect of the cyclopeptolide 90-215 on the production of destruxins and helvolic acid by Metarhizium anisopliae. J Ind Microbiol Biotechnol 19(1):7–11Google Scholar
  42. Evans RH, Ellested GA, Kunstmann MP (1969) Two new metabolites from an unidentified Nigrospora species. Tetrahedron Lett 10:1791–1794Google Scholar
  43. Eyal J, Mabud MA, Fischbein KL, Walter JF, Osborne LS, Landa Z (1994) Assessment of Beauveria bassiana Nov. EO-1 strain, which produces a red pigment for microbial control. Appl Biochem Biotechnol 44(1):65–80Google Scholar
  44. Fiolka MJ (2008) Immunosuppressive effect of cyclosporin A on insect humoral immune response. J Invertebr Pathol 98(3):287–292PubMedGoogle Scholar
  45. Firakova S, Proksa B, Šturdíková M (2007) Biosynthesis and biological activity of enniatins. Die Pharmazie-Int J Pharm 62(8):563–568Google Scholar
  46. Fujii Y, Tani H, Ichinoe M, Nakajima H (2000) Zygosporin D and two new cytochalasins produced by the fungus Metarrhizium anisopliae. J Nat Prod 63(1):132–135PubMedGoogle Scholar
  47. Furumoto T, Hamasaki T, Nakajima H (1997) Vasinfectins A and B: new phytotoxins from Neocosmospora vasinfecta. Tetrahedron Lett 38(31):5523–5524Google Scholar
  48. Gäumann E, Roth S, Ettlinger L, Plattner PA, Nager U (1947) Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum. Experientia 3(5):202–203PubMedGoogle Scholar
  49. Griffin DH (1994) Spore dormancy and germination. Fungal physiology, 2nd edn. John Wiley & Sons, New York, pp 375–398Google Scholar
  50. Grove JF, Pople M (1980) The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70(2):103–105Google Scholar
  51. Gu Y, Wang Y, Ma X, Wang C, Yue G, Zhang Y, Wen X (2015) Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca). Appl Biochem Biotechnol 175(1):155–165PubMedGoogle Scholar
  52. Guengerich FP, DiMari SJ, Broquist HP (1973) Isolation and characterization of a l-pyridine fungal alkaloid. J Am Chem Soc 95(6):2055–2056Google Scholar
  53. Gupta S, Krasnoff SB, Renwick JAA, Roberts DW, Steiner JR, Clardy J (1993) Viridoxins A and B: novel toxins from the fungus Metarhizium flavoviride. J Org Chem 58(5):1062–1067Google Scholar
  54. Harborne JB (1986) Recent advances in chemical ecology. Nat Prod Rep 3:323–344PubMedGoogle Scholar
  55. Harrington GJ, Neilands JB (1982) Isolation and characterization of dimerum acid from Verticillium dahliae. J Plant Nutr 5(4–7):675–682Google Scholar
  56. Hartmann T (1985) Prinzipien des pflanzlichen Sekundärstoffwechsels. Plant Syst Evol 150:15–34Google Scholar
  57. Haslam E (1985) Metabolites and metabolism, a commentary on secondary metabolism. Clarendon Press, Oxford, 161 pGoogle Scholar
  58. Haslam E (1986) Secondary metabolism, fact or fiction. Nat Prod Rep 3:217–249Google Scholar
  59. Hayakawa S, Minato H, Katagiri K (1971) The ilicicolins, antibiotics from Cylindrocladium ilicicola. J Antibiot 24(9):653–654PubMedGoogle Scholar
  60. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60(1):161–170Google Scholar
  61. Hellwig V, Mayer-Bartschmid A, Müller H, Greif G, Kleymann G, Zitzmann W, Stadler M (2003) Pochonins A− F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. J Nat Prod 66(6):829–837PubMedGoogle Scholar
  62. Herrmann M, Zocher R, Haese A (1996) Enniatin production by fusarium strains and its effect on potato tuber tissue. Appl Environ Microbiol 62(2):393–398PubMedPubMedCentralGoogle Scholar
  63. Hino M, Nakayama O, Tsurumi Y, Adachi K, Shibata T, Terano H, Imanaka H (1985) Studies of an immunomodulator, swainsonine. J Antibiot 38(7):926–935PubMedGoogle Scholar
  64. Hiraga K, Yamamoto S, Fukuda H, Hamanaka N, Oda K (2005) Enniatin has a new function as an inhibitor of Pdr5p, one of the ABC transporters in Saccharomyces cerevisiae. Biochem Biophys Res Commun 328(4):1119–1125PubMedGoogle Scholar
  65. Hu Q, Dong T (2015) Non-ribosomal peptides from entomogenous fungi. In: Sree KS, Varma A (eds) Biocontrol of lepidopteran pests. Springer, Cham, pp 169–206Google Scholar
  66. Hu Q, Li F, Zhang Y (2016) Risks of mycotoxins from mycoinsecticides to humans. Biomed Res Int 2016:1Google Scholar
  67. Huxham IM, Lackie AM, McCorkindale NJ (1989) Inhibitory effects of cyclodepsipeptides, destruxins, from the fungus Metarhizium anisopliae, on cellular immunity in insects. J Insect Physiol 35(2):97–105Google Scholar
  68. Iijima M, Masuda T, Nakamura H, Naganawa H, Kurasawa S, Okami Y, Iitaka Y (1992) Metacytofilin, a novel immunomodulator produced by Metarhizium sp. TA2759. J Antibiot 45(9):1553–1556PubMedGoogle Scholar
  69. Isaka M, Yangchum A, Supothina S, Laksanacharoen P, Luangsa-ard JJ, Hywel-Jones NL (2015) Ascochlorin derivatives from the leafhopper pathogenic fungus Microcera sp. BCC 17074. J Antibiot 68(1):47PubMedGoogle Scholar
  70. Iwasaki S, Sair MI, Igarashi H, Okuda S (1970) Revised structure of helvoic acid. J Chem Soc Chem Commun 17:1119–1120Google Scholar
  71. Jalal MA, Love SK, van der Helm D (1986) Siderophore-mediated iron (III) uptake in Gliocladium virens: 1. Properties of cis-Fusarinine, trans-fusarmine, dimerum acid, and their ferric complexes. J Inorg Biochem 28(4):417–430PubMedGoogle Scholar
  72. Jalal MAF, Hossain MB, van der Helm D, Barnes CL (1988) Structure of ferrichrome-type siderophores with dissimilar N δ-acyl groups: Asperchrome B1, B2, B3, D1, D2 and D3. Biol Met 1(2):77–89PubMedGoogle Scholar
  73. Jegorov A, Weiser J (1990) Production of cyclosporins by entomopathogenic fungi. Microbios Lett 45(178):65–69Google Scholar
  74. Kawagishi H, Sato H, Sakamura S, Kobayashi K, Tadao U (1984) Isolation and structure of a new diprenyl phenol, colletorin B produced by Cephalosporium diospyri. Agric Biol Chem 48(7):1903–1904Google Scholar
  75. Kawazu K, Murakami T, Ono Y, Kanzaki H, Kobayashi A, Mikawa T, Yoshikawa N (1993) Isolation and characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084. Biosci Biotechnol Biochem 57(1):98–101PubMedGoogle Scholar
  76. Keswani C (2015a) Proteomics studies of thermotolerant strain of Trichoderma spp. Ph.D. thesis, Banaras Hindu University, Varanasi, IndiaGoogle Scholar
  77. Keswani C (2015b) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Idea.
  78. Keswani C, Singh SP, Singh HB (2013) Beauveria bassiana: status, mode of action, applications and safety issues. Biotech Today 3:16–20Google Scholar
  79. Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52Google Scholar
  80. Khambay BPS, Bourne JM, Cameron S, Kerry BR, Zaki MJ (2000) A nematicidal metabolite from Verticillium chlamydosporium. Pest Manag Sci 56(12):1098–1099Google Scholar
  81. Khan S, Guo L, Maimaiti Y, Mijit M, Qiu D (2012) Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed 3(1)Google Scholar
  82. Kikuchi H, Hoshi T, Kitayama M, Sekiya M, Katou Y, Ueda K, Oshima Y (2009) New diterpene pyrone-type compounds, metarhizins A and B, isolated from entomopathogenic fungus, Metarhizium flavoviride and their inhibitory effects on cellular proliferation. Tetrahedron 65(2):469–477Google Scholar
  83. Kim JC, Choi GJ, Park JH, Kim HT, Cho KY (2001) Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag Sci 57(6):554–559PubMedGoogle Scholar
  84. Kodaira Y (1961a) Biochemical studies on the muscardine fungi in the silkworms. J Fac Text Sci Technol Sinshu Univ Seric 5:1–68Google Scholar
  85. Kodaira Y (1961b) Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor. Agric Biol Chem 25:261–262Google Scholar
  86. Kodaira Y (1962) Studies on the new toxic substances to insects, destruxin A and B, produced by Oospora destructor. Part I. Isolation and purification of destruxin A and B. Agric Biol Chem 26:36–42Google Scholar
  87. Kosuge Y, Suzuki A, Hirata S, Tamura S (1973) Structure of colletochlorin from Colletotrichum nicotianae. Agric Biol Chem 37(2):455–456Google Scholar
  88. Kozone I, Ueda JY, Watanabe M, Nogami S, Nagai A, Inaba S, Ohya Y, Takagi M, Shin-ya K (2009) Novel 24-membered macrolides, JBIR-19 and-20 isolated from Metarhizium sp. fE61. J Antibiot 62(3):159PubMedGoogle Scholar
  89. Krasnoff SB, Gupta S (1994) Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. J Chem Ecol 20(2):293–302PubMedGoogle Scholar
  90. Krasnoff SB, Gibson DM, Belofsky GN, Gloer KB, Gloer JB (1996) New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod 59(5):485–489Google Scholar
  91. Krasnoff SB, Sommers CH, Moon YS, Donzelli BG, Vandenberg JD, Churchill AC, Gibson DM (2006) Production of mutagenic metabolites by Metarhizium anisopliae. J Agric Food Chem 54(19):7083–7088PubMedGoogle Scholar
  92. Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Churchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924PubMedGoogle Scholar
  93. Krasnoff SB, Englich U, Miller PG, Shuler ML, Glahn RP, Donzelli BG, Gibson DM (2012) Metacridamides A and B, macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum. J Nat Prod 75(2):175–180PubMedPubMedCentralGoogle Scholar
  94. Krasnoff SB, Keresztes I, Donzelli BG, Gibson DM (2014) Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii. J Nat Prod 77:1685–1692PubMedGoogle Scholar
  95. Krohn K, Sohrab MH, Draeger S et al (2008) New pyrenocines from an endophytic fungus. Nat Prod Commun 3:1689–1692Google Scholar
  96. Kruger GJ, Steyn PS, Vleggaar R, Rabie CJ (1979) X-ray crystal structure of asteltoxin, a novel mycotoxin from Aspergillus stellatus Curzi. J Chem Soc Chem Commun 10:441–442Google Scholar
  97. Kuboki H, Tsuchida T, Wakazono K, Isshiki K, Kumagai H, Yoshioka T (1999) Mer-f3, 12-hydroxy-ovalicin, produced by Metarrhizium sp. f3. The J Antibiot 52(6):590–593PubMedGoogle Scholar
  98. Kulanthaivel P, Hallock YF, Boros C, Hamilton SM, Janzen WP, Ballas LM, Katz B (1993) Balanol: a novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. J Am Chem Soc 115(14):6452–6453Google Scholar
  99. Lee SY, Kinoshita H, Ihara F, Igarashi Y, Nihira T (2008) Identification of novel derivative of helvolic acid from Metarhizium anisopliae grown in medium with insect component. J Biosci Bioeng 105(5):476–480PubMedGoogle Scholar
  100. Levy D, Bluzat A, Seigneuret M, Rigaud JL (1995) Alkali cation transport through liposomes by the antimicrobial fusafungine and its constitutive enniatins. Biochem Pharmacol 50(12):2105–2107PubMedGoogle Scholar
  101. Lin Y, Wu X, Deng Z, Wang J, Zhou S, Vrijmoed LLP, Jones EG (2002) The metabolites of the mangrove fungus Verruculina enalia no. 2606 from a salt lake in the Bahamas. Phytochemistry 59(4):469–471PubMedGoogle Scholar
  102. Lira SP, Vita-Marques AM, Seleghim MH, Bugni TS, LaBarbera DV, Sette LD, Berlinck RG (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59(9):553PubMedGoogle Scholar
  103. Liu BL, Tzeng YM (2012) Development and applications of destruxins: a review. Biotechnol Adv 30:1242–1254PubMedGoogle Scholar
  104. Luckner M (1972) Secondary metabolism in plants and animals. Chapman and Hall, LondonGoogle Scholar
  105. Luckner M (1990) Secondary metabolism in plants and animals, 3rd edn. Springer, BerlinGoogle Scholar
  106. Manickam M, Ramanathan M, Farboodniay Jahromi MA, Chansouria JPN, Ray AB (1997) Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60(6):609–610PubMedGoogle Scholar
  107. Mantzoukas S, Chondrogiannis C, Grammatikopoulos G (2015) Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomol Exp Appl 154(1):78–87Google Scholar
  108. Matha V, Weiser J, Olejnicek J (1988) The effect of tolypin in Tolypocladiumniveum crude extract against mosquito and blackfly larvae in the laboratory. Folia Parasitol 35(4):379–381Google Scholar
  109. Minato H, Katayama T, Hayakawa S, Katagiri K (1972) Identification of iligigolins with asgochlorin and LL-Z 1272. J Antibiot 25(5):315–316PubMedGoogle Scholar
  110. Minato H, Matsumoto M, Katayama T (1973) Studies on the metabolites of Verticillium sp. structures of verticillins A, B, and C. J Chem Soc Perkin Trans 1:1819–1825Google Scholar
  111. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis– applied facets. Springer, New Delhi, pp 111–125Google Scholar
  112. Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Ōmura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8(24):5601–5604PubMedGoogle Scholar
  113. Morris RA, Ewing DF, Whipps JM, Coley-Smith JR (1995) Antifungal hydroxymethyl-phenols from the mycoparasite Verticillium biguttatum. Phytochemistry 39(5):1043–1048Google Scholar
  114. Mothes K (1976) Secondary plant substances as materials for chemical high quality breeding in higher plants. In: Mansell RL, Wallace J (eds) Biochemical interaction between plants and insects, Recent advances in phytochemistry, vol 10. Plenum, New York, pp 385–405Google Scholar
  115. Moya P, Cantín Á, Castillo MA, Primo J, Miranda MA, Primo-Yúfera E (1998) Isolation, structural assignment, and synthesis of N-(2-Methyl-3-oxodecanoyl)-2-pyrroline, a new natural product from Penicillium brevicompactum with in vivo anti-juvenile hormone activity. J Org Chem 63(23):8530–8535Google Scholar
  116. Mule G, D’Ambrosio A, Logrieco A, Bottalico A (1992) Toxicity of mycotoxins of fusarium sambucinum for feeding in Galleria mellonella. Entomol Exp Appl 62(1):17–22Google Scholar
  117. Mulheirn LJ, Beechey RB, Leworthy DP, Osselton MD (1974) Aurovertin B, a metabolite of Calcarisporium arbuscula. J Chem Soc Chem Commun 21:874–876Google Scholar
  118. Murakoshi S, Ichinoe M, Suzuki A, Kanaoka M, Isogai A, Tamura S (1978) Presence of toxic substance in fungus bodies of the entomopathogenic fungi, Beauveria bassiana and Verticillium lecanii. Appl Entomol Zool 13(2):97–102Google Scholar
  119. Nakajyo S, Shimizu K, Kometani A, Suzuki A, Ozaki H, Urakawa N (1983) On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in Guinea-pig Taenia coli. Jpn J Pharmacol 33(3):573–582PubMedGoogle Scholar
  120. Nilanonta C, Isaka M, Chanphen R, Thong-orn N, Tanticharoen M, Thebtaranonth Y (2003) Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 59(7):1015–1020Google Scholar
  121. Niu XM (2017) Secondary metabolites from Pochonia chlamydosporia and other species of Pochonia. In: Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health. Springer, Cham, pp 131–168Google Scholar
  122. Niu XM, Wang YL, Chu YS, Xue HX, Li N, Wei LX, Zhang KQ (2009) Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. J Agric Food Chem 58(2):828–834Google Scholar
  123. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18(10):2836–2853PubMedPubMedCentralGoogle Scholar
  124. Okuda S, Iwasaki S, Tsuda K, Sano Y, Hata T, Udagawa S, Yamaguchi H (1964) The structure of helvolic acid. Chem Pharm Bull 12(1):121–124PubMedGoogle Scholar
  125. Okuda S, Iwasaki S, Sair MI, Machida Y, Inoue A, Tsuda K (1967) Stereochemistry of helvolic acid. Tetrahedron Lett 24:2295–2302PubMedGoogle Scholar
  126. Pais M, Das BC, Ferron P (1981) Depsipeptides from Metarhizium anisopliae. Phytochemistry 20(4):715–723Google Scholar
  127. Pedras MSC, Zaharia IL, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596PubMedGoogle Scholar
  128. Podsiadlowski L, Matha V, Vilcinskas A (1998) Detection of a P-glycoprotein related pump in Chironomus larvae and its inhibition by verapamil and cyclosporin A. Comp Biochem Physiol B: Biochem Mol Biol 121(4):443–450Google Scholar
  129. Poprawski TJ, Robert PH, Maniania NK (1994) Contact toxicity of the mycotoxin destruxin E to Empoasca vitis (Göthe) (Hom., Cicadellidae). J Appl Entomol 117(1–5):135–143Google Scholar
  130. Putri SP, Ishido KI, Kinoshita H, Kitani S, Ihara F, Sakihama Y, Nihira T (2014) Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi. J Biosci Bioeng 117(5):557–562PubMedGoogle Scholar
  131. Ravindra G, Ranganayaki R, Raghothama S, Srinivasan MC, Gilardi RD, Karle IL, Balaram P (2004) Two novel hexadepsipeptides with several modified amino acid residues isolated from the fungus Isaria. Chem Biodivers 1(3):489–504PubMedGoogle Scholar
  132. Robert P, Riba G (1989) Toxic and repulsive effects of spray, ‘peros’ and systemic applications of destruxin E to aphids. Mycopathologia 108(3):179–183Google Scholar
  133. Roberts DW (1966) Toxins from the entomogenous fungus Metarrhizium anisopliae: I. Production in submerged and surface cultures, and in inorganic and organic nitrogen media. J Invertebr Pathol 8:212–221PubMedGoogle Scholar
  134. Roberts DW (1969) Toxins from the entomogenous fungus Metarrhizium anisopliae: isolation of destruxins from submerged cultures. J Invertebr Pathol 14:82–88Google Scholar
  135. Roberts DW (1981) Toxins of entomopathogenic fungi. In: Burges HD (ed) Microbial control of pests. Academic, London, pp 441–464Google Scholar
  136. Rosenthal GA, Janzen DH (1979) Herbivores. Academic, New YorkGoogle Scholar
  137. Rothweiler W, Tamm C (1966) Isolation and structure of phomin. Cell Mol Life Sci 22(11):750–752Google Scholar
  138. Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, Balaram P (2007) Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J Nat Prod 70:715PubMedGoogle Scholar
  139. Samuels RI, Charnley AK, Reynolds SE (1988) The role of destruxins in the pathogenicity of 3 strains of Metarhizium anisopliae for the tobacco hornworm Manduca sexta. Mycopathologia 104(1):51–58Google Scholar
  140. Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1:283–319PubMedPubMedCentralGoogle Scholar
  141. Sanivada SK, Challa MM (2014) Computational interaction of entomopathogenic fungal secondary metabolites with proteins involved in human xenobiotic detoxification. Int J Pharm Pharm Sci 6:312Google Scholar
  142. Sasaki H, Hosokawa T, Nawata Y, Ando K (1974) Isolation and structure of ascochlorin and its analogs. Agric Biol Chem 38(8):1463–1466Google Scholar
  143. Sato H, Konoma K, Sakamura S, Furusaki A, Matsumoto T, Matsuzaki T (1981) X-ray crystal structure of pyrenocine A, a phytotoxin from Pyrenochaeta terrestris. Agric Biol Chem 45(3):795–797Google Scholar
  144. Satre M (1981) The effect of asteltoxin and citreomontanine, two polyenic α-pyrone mycotoxins, on Escherichia coli adenosine triphosphatase. Biochem Biophys Res Commun 100(1):267–274PubMedGoogle Scholar
  145. Schenzel J, Forrer HR, Vogelgsang S, Hungerbühler K, Bucheli TD (2012) Mycotoxins in the environment: I. Production and emission from an agricultural test field. Environ Sci Technol 46(24):13067–13075PubMedGoogle Scholar
  146. Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27(6):869–886PubMedGoogle Scholar
  147. Seephonkai P, Isaka M, Kittakoop P, Boonudomlap U, Thebtaranonth Y (2004) A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370. J Antibiot 57(1):10–16PubMedGoogle Scholar
  148. Seigler DS (1998) Plant secondary metabolism. Springer US, Boston. CrossRefGoogle Scholar
  149. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881PubMedGoogle Scholar
  150. Shima M (1955) On the metabolic products of the silkworm muscardines. Bull Sericult Exp Stat 14:427–449Google Scholar
  151. Shinonaga H, Kawamura Y, Ikeda A, Aoki M, Sakai N, Fujimoto N, Kawashima A (2009a) The search for a hair-growth stimulant: new radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Lett 50(1):108–110Google Scholar
  152. Shinonaga H, Kawamura Y, Ikeda A, Aoki M, Sakai N, Fujimoto N, Kawashima A (2009b) Pochonins K–P: new radicicol analogues from Pochonia chlamydosporia var. chlamydosporia and their WNT-5A expression inhibitory activities. Tetrahedron 65(17):3446–3453Google Scholar
  153. Shiomi K, Matsui R, Kakei A, Yamaguchi Y, Masuma R, Hatano H, Turberg A (2010) Verticilide, a new ryanodine-binding inhibitor, produced by Verticillium sp. FKI-1033. J Antibiot 63(2):77PubMedGoogle Scholar
  154. Sigg HP, Weber HP (1968) Isolierung und Strukturaufklärung von Ovalicin. Helv Chim Acta 51(6):1395–1408PubMedGoogle Scholar
  155. Singh SB, Ball RG, Bills GF, Cascales C, Gibbs JB, Goetz MA, Silverman KC (1996) Chemistry and biology of cylindrols: novel inhibitors of Ras farnesyl-protein transferase from Cylindrocarpon lucidum. J Org Chem 61(22):7727–7737PubMedGoogle Scholar
  156. Singh SB, Zink DL, Dombrowski AW, Dezeny G, Bills GF, Felix JP, Goetz MA (2001) Candelalides A−C: novel diterpenoid pyrones from fermentations of sesquicillium c andelabrum as blockers of the voltage-gated potassium channel Kv1. 3. Org Lett 3(2):247–250PubMedGoogle Scholar
  157. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, SingaporeGoogle Scholar
  158. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, WallingfordGoogle Scholar
  159. Skrobek A, Shah FA, Butt TM (2008) Destruxin production by the entomogenous fungus Metarhizium anisopliae in insects and factors influencing their degradation. BioControl 53(2):361–373Google Scholar
  160. Sparace SA, Reeleder RD, Khanizadeh S (1987) Antibiotic activity of the pyrenocines. Can J Microbiol 33(4):327–330PubMedGoogle Scholar
  161. Springer JP, Cole RJ, Dorner JW, Cox RH, Richard JL, Barnes CL, Van der Helm D (1984) Structure and conformation of roseotoxin B. J Am Chem Soc 106(8):2388–2392Google Scholar
  162. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216PubMedGoogle Scholar
  163. Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species. Biocontrol Sci Tech 10(6):717–735Google Scholar
  164. Strongman DB, Strunz GM, Giguere P, Yu CM, Calhoun L (1988) Enniatins from Fusarium avenaceum isolated from balsam fir foliage and their toxicity to spruce budworm larvae, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). J Chem Ecol 14(3):753–764PubMedGoogle Scholar
  165. Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57(11):732–738PubMedGoogle Scholar
  166. Suzuki A, Tamura S (1972) Isolation and structure of protodestruxin from Metarrhizium anisopliae. Agric Biol Chem 36(5):896–898Google Scholar
  167. Suzuki A, Takahashi N, Tamura S (1970) Mass spectrometry of destruxins A and B, insecticidal cyclodepsipeptides produced by Metarrhizium anisopliae. J Mass Spectrom 4(S1):175–180Google Scholar
  168. Suzuki A, Kanaoka M, Isogai A, Tamura S, Murakoshi S, Ichinoe M (1977) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 18(25):2167–2170Google Scholar
  169. Swain T (1977) Secondary compounds as protective agents. Annu Rev Plant Physiol 28:479–501Google Scholar
  170. Takamatsu S, Rho MC, Masuma R, Hayashi M, Komiyama K, Tanaka H, Omura S (1994) A novel testosterone 5α-reductase inhibitor, 8′, 9′-dehydroascochlorin produced by Verticillium sp. FO-2787. Chem Pharm Bull 42(4):953–956Google Scholar
  171. Takatsuki A, Tamura G, Arima K (1969) Antiviral and antitumor antibiotics. XIV. Effects of ascochlorin and other respiration inhibitors on multiplication of Newcastle disease virus in cultured cells. Appl Microbiol 17(6):825–829PubMedPubMedCentralGoogle Scholar
  172. Tamura G, Suzuki S, Takatsuki A, Ando K, Arima K (1968) Ascochlorin, a new antibiotic, found by paper-disc agar-diffusion method. I. J Anti Biot 21(9):539–544Google Scholar
  173. Toki S, Ando K, Yoshida M, Kawamoto I, Sano H, Matsuda Y (1992a) ES-242-1, a novel compound from Verticillium sp., binds to a site on N-methyl-D-aspartate receptor that is coupled to the channel domain. J Antibiot 45(1):88–93PubMedGoogle Scholar
  174. Toki S, Ando K, Kawamoto I, Sano H, Yoshida M, Matsuda Y (1992b) ES-242-2,-3,-4,-5,-6,-7, and-8, novel bioxanthracenes produced by Verticillium sp., which act on the N-methyl-D-aspartate receptor. J Antibiot 45(7):1047–1054Google Scholar
  175. Tomoda H, Nishida H, Huang XH, Masuma R, Kim YK, Omura S (1992) New cyclodepsipeptides, enniatins D, E and f produced by Fusarium sp. FO-1305Áü. J Antibiot 45(8):1207–1215PubMedGoogle Scholar
  176. Torssell KBG (1997) Natural products chemistry. A mechanistic, biosynthetic and ecological approach, 2nd edn. Apotekarsocieteten, Stockholm, p 480Google Scholar
  177. Trifonov L, Bieri JH, Prewo R, Dreiding AS, Rast DM, Hoesch L (1982) The constitution of vertinolide, a new derivative of tetronic acid, produced by Verticillium intertextum. Tetrahedron 38(3):397–403Google Scholar
  178. Trifonov LS, Bieri JH, Prewo R, Dreiding AS, Hoesch L, Rast DM (1983) Isolation and structure elucidation of three metabolites from Verticillium intertextum: sorbicillin, dihydrosorbicillin and bisvertinoquinol. Tetrahedron 39(24):4243–4256Google Scholar
  179. Trifonov LS, Hilpert H, Floersheim P, Dreiding AS, Rast DM, Skrivanova R, Hoesch L (1986) Bisvertinols: a new group of dimeric vertinoids from Verticillium intertextum. Tetrahedron 42(12):3157–3179Google Scholar
  180. Tsunoo A, Kamijo M, Taketomo N, Sato Y, Ajisaka K (1997) Roseocardin, a novel cardiotonic cyclodepsipeptide from Trichothecium roseum TT103. J Antibiot 50(12):1007–1013PubMedGoogle Scholar
  181. Turner WB (1971) Fungal metabolites. Academic, London, p 446Google Scholar
  182. Turner W, Aldridge D (1983) Fungal metabolites II. Academic, LondonGoogle Scholar
  183. Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Ōmura S (2005) New insecticidal antibiotics, hydroxyfungerins A and B, produced by Metarhizium sp. FKI-1079. J Antibiot 58(12):804PubMedGoogle Scholar
  184. Usuki H, Toyo-oka M, Kanzaki H, Okuda T, Nitoda T (2009) Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent β-N-acetylglucosaminidase inhibitor. Bioorg Med Chem 17(20):7248–7253Google Scholar
  185. Valadon LRG, Mummery RS (1977) Natural beta apo 4’carotenoic acid methyl ester in the fungus Verticillium agaricinum. PhytochemistryGoogle Scholar
  186. Vey A, Quiot JM and Vago C (1985) Immunodepressive effect of fungal toxins: inhibition of the reaction of multicellular encapsulation by the destruxins [infection with Aspergillus niger in Galleria mellonella; biological control]. Comptes Rendus de l’Academie des Sciences Serie 3 Sciences de la VieGoogle Scholar
  187. Vilcinskas A, Matha V, Götz P (1997a) Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J Insect Physiol 43(12):1149–1159PubMedGoogle Scholar
  188. Vilcinskas A, Matha V, Götz P (1997b) Inhibition of phagocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. J Insect Physiol 43(5):475–483Google Scholar
  189. Vilcinskas A, Jegorov A, Landa Z, Götz P, Matha V (1999) Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 122(1):83–92Google Scholar
  190. Wahlman M, Davidson BS (1993) New destruxins from the entomopathogenic fungus Metarhizium anisopliae. J Nat Prod 56(4):643–647Google Scholar
  191. Wainwright M, Betts RP, Teale DM (1986) Antibiotic activity of oosporein from Verticillium psalliotae. Trans Br Mycol Soc 86:168–170. CrossRefGoogle Scholar
  192. Waksman SA, Horning ES, Spencer EL (1943) Two antagonistic fungi, Aspergillus fumigatus and Aspergillus clavatus, and their antibiotic substances. J Bacterial 45(3):233Google Scholar
  193. Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H (2009) Ferricrocin, a siderophore involved in intra-and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 75(12):4194–4196PubMedPubMedCentralGoogle Scholar
  194. Wenke J, Anke H, Sterner O (1993) Pseurotin A and 8-O-demethylpseurotin A from Aspergillus fumigatus and their inhibitory activities on chitin synthase. Biosci Biotechnol Biochem 57(6):961–964Google Scholar
  195. Wilson BJ (1971) Miscellaneous Aspergillus goxins. In: Ciegler A, Kadis S, Aje SJ (eds) Microbial toxins. A comprehensive treatise, vol 6. Academic, New York, pp 288–289Google Scholar
  196. Wu FB, Li TX, Yang MH, Kong LY (2016) Guanacastane-type diterpenoids from the insect-associated fungus Verticillium dahliae. J Asian Nat Prod Res 18(2):117–124PubMedGoogle Scholar
  197. Wu HY, Wang YL, Tan JL, Zhu CY, Li DX, Huang R, Niu XM (2012) Regulation of the growth of cotton bollworms by metabolites from an entomopathogenic fungus Paecilomyces cateniobliquus. J Agric Food Chem 60(22):5604–5608PubMedGoogle Scholar
  198. Xu Y, Orozco R, Wijeratne EK, Gunatilaka AL, Stock SP, Molnár I (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15(9):898–907PubMedGoogle Scholar
  199. Yamamoto I, Suide H, Henmi T et al (1970) Antimicrobial α/β-unsaturated δ-lactones from fungi. Takeda Kenkyusho Ho 29:1–10Google Scholar
  200. Yamamoto K, Hatano H, Arai M, Shiomi K, Tomoda H, Omura S (2003) Structure elucidation of new monordens produced by Humicola sp. FO-2942. J Antibiot 56(6):533–538PubMedGoogle Scholar
  201. Yamano T, Hemmi S, Yamamoto I et al (1971) Fermentative production of antibiotic phomalactone. Patent report, Japan. 71 32,800 (Ct. C 12d, A 61k, C 07g). Takeda Chemical Industries LtdGoogle Scholar
  202. You F, Han T, Wu JZ, Huang BK, Qin LP (2009) Antifungal secondary metabolites from endophytic Verticillium sp. Biochem Syst Ecol 37(3):162–165Google Scholar
  203. Zähner H, Keller-Schierlein W, Hütter R, Hess-Leisinger K, Deer A (1963) Stoffwechselprodukte von Mikroorganismen. ArchivfürMikrobiologie 45(2):119–135Google Scholar
  204. Zhang P, Bao B, Dang HT, Hong J, Lee HJ, Yoo ES, Jung JH (2009) Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J Nat Prod 72(2):270–275PubMedGoogle Scholar
  205. Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Tech 17(9):879–920Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.International Rice Research InstituteNew DelhiIndia

Personalised recommendations