Exploring the Beneficial Endophytic Microorganisms for Plant Growth Promotion and Crop Protection: Elucidation of Some Bioactive Secondary Metabolites Involved in Both Effects

  • Rania Aydi Ben Abdallah
  • Hayfa Jabnoun-Khiareddine
  • Mejda Daami-Remadi


Endophytic microorganisms are ubiquitous colonizers of the inner plant tissues without normally causing any morphological changes or disease symptoms. Several molecular studies focused on endophytic bacteria or fungi revealed a diversity of species. Edaphic conditions and recognition traits required for a successful colonization of plant tissues by endophytes are described. Beneficial endophytes promote plant growth and/or protect their host against phytopathogens through the production of various bioactive secondary metabolites. Efficiency of endophytes and/or their extracellular metabolites for suppression of plant diseases and promotion of plant growth and yield was largely investigated.


Endophytes Secondary metabolites Phytopathogens Biological control PGPR 


  1. Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from Solanaceous crops. Int J Microbiol 2014:1–14Google Scholar
  2. Adhikari TB, Joseph CM, Yang GP, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924PubMedGoogle Scholar
  3. Akram W, Anjum T, Ali B (2015) Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. Biol Control 60:271–280Google Scholar
  4. Algam SA, Guan-lin X, Coosemans J (2005) Delivery methods for introducing endophytic Bacillus into tomato and their effect on growth promotion and suppression of tomato wilt. Plant Pathol J 4:69–74Google Scholar
  5. Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61PubMedGoogle Scholar
  6. Alström S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149:57–64Google Scholar
  7. Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G et al (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of Sclerotinia stem rot disease. J Appl Microbiol 112:159–174PubMedGoogle Scholar
  8. Andargie M, Li L, Feng A, Zhu X, Li J (2015) Colonization of rice roots by a green fluorescent protein-tagged isolate of Ustilaginoidea virens. Am J Plant Sci 6:2272–2279Google Scholar
  9. Araújo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa. Appl Environ Microbiol 68:4906–4914PubMedPubMedCentralGoogle Scholar
  10. Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. App Environ Microbiol 45:1802–1807Google Scholar
  11. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156PubMedGoogle Scholar
  12. Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016a) Endophytic bacteria from Datura stramonium for Fusarium wilt suppression and tomato growth promotion. J Microb Biochem Technol 8:30–41Google Scholar
  13. Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016b) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems. J Phytopathol 164:811–824Google Scholar
  14. Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016c) Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Sci Technol 26:1139–1165Google Scholar
  15. Aydi Ben Abdallah R, Mejdoub-Trabelsi B, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016d) Isolation of endophytic bacteria from Withania somnifera and assessment of their ability to suppress Fusarium wilt disease in tomato and to promote plant growth. J Plant Pathol Microbiol 7:352–362Google Scholar
  16. Aydi Ben Abdallah R, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016e) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88Google Scholar
  17. Aydi Ben Abdallah R, Nefzi A, Jabnoun-Khiareddine H, Messaoud C, Stedel C, Papadopoulou KK et al (2016f) A putative endophytic Bacillus cereus str. S42 from Nicotiana glauca for biocontrol of Fusarium wilt disease in tomato and gas chromatography-mass spectrometry analysis of its chloroform extract. Arch Phytopathol Plant Protect 49:343–361Google Scholar
  18. Aydi Ben Abdallah R, Mejdoub-Trabelsi B, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2017a) Use of endophytic bacteria naturally associated with Cestrum nocturnum for Fusarium wilt biocontrol and enhancement of tomato growth. Tunisian J Plant Prot 12:15–40Google Scholar
  19. Aydi Ben Abdallah R, Stedel C, Garagounis C, Nefzi A, Jabnoun-Khiareddine H, Papadopoulou KK et al (2017b) Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot 99:45–58Google Scholar
  20. Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterisation of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–177Google Scholar
  21. Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194Google Scholar
  22. Balsanelli E, Serrato RV, de Baura V, Sassaki G, Yates MG, Rigo LU et al (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244PubMedGoogle Scholar
  23. Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J Chem Ecol 25:2397–2406Google Scholar
  24. Barker SJ, Edmonds-Tibbett TL, Forsyth LM, Klingler JP, Toussaint JP, Smith FA et al (2005) Root infection of the reduced mycorrhizal colonization (rmc) mutant of tomato reveals genetic interaction between symbiosis and parasitism. Physiol Mol Plant Pathol 67:277–283Google Scholar
  25. Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. Plant Physiol 99:1329–1335PubMedPubMedCentralGoogle Scholar
  26. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane- 1-carboxylate deaminase. Can J Microbiol 47:642–652PubMedGoogle Scholar
  27. Bell CR, Dickie GA, Chan JWYF (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gal disease in planta. Am J Enol Vitic 46:499–508Google Scholar
  28. Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330Google Scholar
  29. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 53–67Google Scholar
  30. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedGoogle Scholar
  31. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450–466PubMedPubMedCentralGoogle Scholar
  32. Bhuvaneswari S, Madhavan S, Panneerselvam A (2013) Enumeration of endophytic bacteria from Solanum trilobatum L. World J Pharm Res 3:2270–2279Google Scholar
  33. Bibi F, Yasir M, Song GC, Lee SY, Chung YR (2012) Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on Oomycetous plant pathogens. Plant Pathol J 28:20–31Google Scholar
  34. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350PubMedGoogle Scholar
  35. Botta AL, Santacecilia A, Ercole C, Cacchio P, Del Gallo M (2013) In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol 30:666–674Google Scholar
  36. Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197PubMedGoogle Scholar
  37. Cai XC, Li H, Xue YR, Liu CH (2013) Study of endophytic Bacillus amyloliquefaciens CC09 andits antifungal CLPs. J Appl Biol Biotechnol 1:1–5Google Scholar
  38. Castro RA, Quecine MC, Lacava PT, Batista B, Luvizotto DM, Marcon J et al (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus 3:382–391PubMedPubMedCentralGoogle Scholar
  39. Chelius MK, Triplet EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787PubMedPubMedCentralGoogle Scholar
  40. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693PubMedPubMedCentralGoogle Scholar
  41. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678Google Scholar
  42. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608PubMedPubMedCentralGoogle Scholar
  43. Cretoiu MS, Kielak AM, WA A-S, Sϕrensen SJ, van Elsas JD (2012) Mining of unexplored habitats for novel chitinases-ChiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94:1347–1358PubMedPubMedCentralGoogle Scholar
  44. Dalal J, Kulkarni N (2013) Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril). Curr Res Microbiol Biotechnol 1:62–69Google Scholar
  45. De Weert S, Kuiper I, Kamilova F, Mulders IHM, Bloemberg GV, Kravchenko L et al (2007) The role of competitive root tip colonization in the biological control of tomato foot and root rot. In: Chincolkar SB, Mukerji KG (eds) Biological control of plant diseases. The Haworth Press Inc, Oxford/New York, pp 103–122Google Scholar
  46. Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R et al (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193:2070–2071PubMedPubMedCentralGoogle Scholar
  47. Dong YM, Inoguez AL, Triplet EW (2003) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59Google Scholar
  48. Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17PubMedGoogle Scholar
  49. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810PubMedPubMedCentralGoogle Scholar
  50. Dunfield K, Germida J (2001) Diversity of bacterial communities in the rhizosphere and root interior of fi eld-grown genetically modify ed Brassica napus. FEMS Microbiol Ecol 38:1–9Google Scholar
  51. Dunne C, Crowley JJ, Moenne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931Google Scholar
  52. El-Mehalawy AA, Gebreel HM, Rifaat HM, El-Kholy IM, Humid AA (2008) Effect of antifungal compounds produced by certain bacteria on physiological activities of human and plant pathogenic fungi. J Appl Sci Res 4:425–432Google Scholar
  53. Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041PubMedGoogle Scholar
  54. Fakhouri W, Buchenauer H (2002) Characteristics of fluorescent pseudomonas isolates towards controlling of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J Plant Dis Prot 110:143–156Google Scholar
  55. Fishal EM, Meon S, Yun WM (2010) Induction of tolerance to fusarium wilt and defense-related mechanisms in the plantlets of susceptible Berangan Banana pre-inoculated with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agric Sci China 9:1140–1149Google Scholar
  56. Forchetti G, Asciarelli OM, Lemano SA, Emano D, Lvarez A, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152PubMedGoogle Scholar
  57. Fuentes-Ramírez LE, Caballero-Mellado J, Sepuúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128Google Scholar
  58. Gaiero JR, Mccall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750PubMedGoogle Scholar
  59. Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci U S A 101:10107–10112PubMedPubMedCentralGoogle Scholar
  60. Garbeva P, Overbeek LS, Vuurde JW, Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383PubMedGoogle Scholar
  61. Gasser I, Cardinale M, Müller H, Heller S, Eberl L, Lindenkamp N et al (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136Google Scholar
  62. Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118PubMedGoogle Scholar
  63. Gond SK, Marshall SB, Torresa MS, White JJF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87PubMedGoogle Scholar
  64. Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R (2015) Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech 5:653–661PubMedGoogle Scholar
  65. Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829PubMedGoogle Scholar
  66. Govindappa M, Prathap S, Vinay V, Channabasava R (2014) Chemical composition of methanol extract of endophytic fungi, Alternaria sp. of Tabebuia argentea and their antimicrobial and antioxidant activity. Int J Biol Pharm Res 5:861–869Google Scholar
  67. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37PubMedGoogle Scholar
  68. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412Google Scholar
  69. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645PubMedPubMedCentralGoogle Scholar
  70. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedGoogle Scholar
  71. Hagelin G, Indrevoll B, Hoeg-Jensen T (2007) Use of synthetic analogues in confirmation of structure of the peptide antibiotics maltacines. Int J Mass Spectrom 268:254–264Google Scholar
  72. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914Google Scholar
  73. Hammerschmidt R, Smith-Becker JA (2000) The role of salicylic acid in disease resistance. In: Slusarenko A, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publisher, Dordrecht, pp 37–53Google Scholar
  74. Han Q, Wu F, Wang X, Qi H, Shi L, Ren A et al (2015) The bacterial lipopeptide iturins induce Verticillium dahlia cell death by affecting fungal signaling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188PubMedGoogle Scholar
  75. Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496PubMedGoogle Scholar
  76. Huang CJ (2012) Dimethyl disulfide is an induced systemic resistance-elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310PubMedGoogle Scholar
  77. Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88Google Scholar
  78. Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15:233–242PubMedGoogle Scholar
  79. Hwang JS, You YH, Bae JJ, Khan SA, Kim JG, Choo YS (2011) Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J Coast Res 27:544–548Google Scholar
  80. Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858PubMedGoogle Scholar
  81. Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18:169–178PubMedGoogle Scholar
  82. Izhaki I, Fridman S, Gerchman Y, Halpern M (2013) Variability of bacterial community composition on leaves between and within plant species. Curr Microbiol 66:227–235PubMedGoogle Scholar
  83. Jakobi M, Winkelmann G, Kaiser D, Kempler C, Jung G, Berg G et al (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104PubMedGoogle Scholar
  84. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766Google Scholar
  85. James EK, Olivares FL, de Oliveira ALM, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760PubMedGoogle Scholar
  86. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906PubMedGoogle Scholar
  87. Jasim B, Joseph AA, John J, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204PubMedGoogle Scholar
  88. Ji X, Lu G, Gai Y, Gao H, Lu B, Kong L et al (2010) Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol 10:243–254PubMedPubMedCentralGoogle Scholar
  89. Kalai-Grami L, Saidi S, Bachkouel S, Ben Slimene I, Mnari-Hattab M, Hajlaoui MR et al (2014) Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum. Appl Biochem Biotechnol 174:365–375PubMedGoogle Scholar
  90. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256PubMedGoogle Scholar
  91. Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461PubMedGoogle Scholar
  92. Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864PubMedGoogle Scholar
  93. Khan Z, Doty S (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322:197–207Google Scholar
  94. Khan SA, Hamayun M, Rim SO, Lee IJ, Seu JC, Choo YS et al (2008) Isolation of endophytic fungi capable of plant growth promotion from monocots inhabited in the coastal sand dunes of Korea. J Life Sci 18:1355–1359Google Scholar
  95. Khan AR, Ullah I, Waqas M, Shahza R, Hong SJ, Park et al (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466PubMedGoogle Scholar
  96. Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust Plant Pathol 28:21–26Google Scholar
  97. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266PubMedGoogle Scholar
  98. Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite what decides? Curr Opin Plant Biol 9:358–363PubMedGoogle Scholar
  99. Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1–6Google Scholar
  100. Kpomblekou AK, Tabatabai MA (2003) Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agric Ecosyst Environ 100:275–284Google Scholar
  101. Krause A, Bischoff B, Miché L, Battistoni F, Reinhold-Hurek B (2011) Exploring the function of alcohol dehydrogenases during the endophytic life of Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 24:1325–1332PubMedGoogle Scholar
  102. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786PubMedGoogle Scholar
  103. Kuklinsky-Sobral HL, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99Google Scholar
  104. Kumar GA, Antony AR, Kannan VR (2015) Exploration of endophytic microorganisms from selected medicinal plants and their control potential to multi drug resistant pathogens. J Med Plants Stud 3:49–57Google Scholar
  105. Kuriakose GC, Singh S, Rajvanshi PK, Surin WR, Jayabaskaran C (2014) In Vitro cytotoxicity and apoptosis induction in human cancer cells by culture extract of an endophytic Fusarium solani strain isolated from Datura metel L. Pharm Anal Acta 5:293–101Google Scholar
  106. Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120Google Scholar
  107. Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312PubMedGoogle Scholar
  108. Lepoivre P (2003) La lutte biologique en phytopathologie. In: Lepoivre P (ed) Phytopathologie: Bases moléculaires et biologiques des pathosystèmes et fondements des stratégies de lutte. De boeck & Larcier, Université Belgium, Brussels, pp 284–309Google Scholar
  109. Li H, Qing C, Zhang Y, Zhao Z (2005) Screening for endophytic fungi with antitumour and antifungal activities from Chinese medicinal plants. World J Microbiol Biotechnol 21:1515–1519Google Scholar
  110. Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008) Pestalotheols A–D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71:664–668PubMedGoogle Scholar
  111. Li H, Wang X, Han M, Zhao Z, Wang M, Tang Q et al (2012) Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr J Biotechnol 11:231–242Google Scholar
  112. Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185:554–567PubMedGoogle Scholar
  113. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Ann Rev Microbiol 63:541–556Google Scholar
  114. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490Google Scholar
  115. Lugtenberg B, Malfanova N, Kamilova F, Berg G (2013) Microbial control of plant diseases. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 67–91Google Scholar
  116. Mabrouk AM, Kheiralla ZH, Hamed ER, Youssry AA. Abd El Aty A(2008) Production of some biologically active secondary metabolites from marine-derived fungus Varicosporina ramulosa. Malays J Microbiol 4:14–24Google Scholar
  117. Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258PubMedGoogle Scholar
  118. Mahdi T, Mohamed I, Yagi S (2014) Endophytic fungal communities associated with ethno-medicinal plants from Sudan and their antimicrobial and antioxidant prospective. J Forest Prod Indus 3:248–256Google Scholar
  119. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I et al (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532PubMedPubMedCentralGoogle Scholar
  120. Malfanova N, Lugtenberg B, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 15–37Google Scholar
  121. Manter DK, Delgado J, Holm DG, Stong R (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166PubMedGoogle Scholar
  122. Marcos FCC, Lório RDPF, da Silveira APD, Ribeiro RV, Machado EC, Lagôa AMMDA (2016) Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75:1–9. CampinasGoogle Scholar
  123. McDouga R, Stewart A, Bradshaw R (2012) Transformation of Cyclaneusma minus with green fluorescent protein (GFP) to enable screening of fungi for biocontrol activity. Forests 23:83–94Google Scholar
  124. McInroy JA, Kloepper JW (1995) Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol 41:895–901Google Scholar
  125. Mejdoub-Trabelsi B, Abdallah RAB, Ammar N, Kthiri Z, Hamada W, Daami-Remadi M (2016) Bio-suppression of Fusarium wilt disease in potato using nonpathogenic potato-associated fungi. J Plant Pathol Microbiol 7:347–356Google Scholar
  126. Mejía LC, Rojas EI, Maynard Z, Bael SV, Arnold E, Hebbar P et al (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. BioControl 46:4–14Google Scholar
  127. Meneses CHSG, Rouws LFM, Simoes-Araujo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458PubMedGoogle Scholar
  128. Messiha NAS, van Diepeningen AD, Farag NS, Abdallah SA, Janse JD, van Bruggen AHC (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225Google Scholar
  129. Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from rots of fieldgrown canola. FEMS Microbiol Ecol 42:399–407PubMedGoogle Scholar
  130. Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294Google Scholar
  131. Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698PubMedPubMedCentralGoogle Scholar
  132. Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81PubMedGoogle Scholar
  133. Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339PubMedPubMedCentralGoogle Scholar
  134. Nandhini S, Sendhilvel V, Babu S (2012) Endophytic bacteria from tomato and their efficacy against Fusarium oxysporum f. sp. lycopersici, the wilt pathogen. J Biopest 5:178–185Google Scholar
  135. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701Google Scholar
  136. Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. J Biosci 18:66–70Google Scholar
  137. Ngamau CN, Matiru VN, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422Google Scholar
  138. Ngoma L, Esau B, Babalola OO (2013) Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm, Mafikeng, South Africa. Afr J Biotechnol 12:4105–4114Google Scholar
  139. Nimal Christhudas IVS, Praveen Kumar P, Agastian P (2012) Antimicrobial activity and HPLC analysis of tropane alkaloids in Streptomyces spp. isolated from Datura stramonium L. Asian J Pharm Clin Res 5:278–282Google Scholar
  140. Niu DD, Liu HX, Jiang CH, Wang Y, Wang QY, HL J et al (2011) The plant growth-promoting rhizobacteria Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate and jasmonate/ethylene-dependent signalling pathways. Mol Plant-Microbe Interact 24:533–542PubMedGoogle Scholar
  141. Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant-Microbe Interact 13:430–438PubMedGoogle Scholar
  142. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedGoogle Scholar
  143. Orole OO, Adejumo TO (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3:969–973Google Scholar
  144. Patel HA, Patel RK, Khristi SK, Parikh K, Rajendran G (2012) Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth promoting characteristics. Nepal J Biotechnol 2:37–52Google Scholar
  145. Paul NC, Ji SH, Deng JX, Yu SH (2013) Assemblages of endophytic bacteria in chili pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Omics J 6:441–448Google Scholar
  146. Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:1–10Google Scholar
  147. Perottoab S, Angelinic P, Bianciottob V, Bonfanteab P, Girlandaab M, Kulld T et al (2013) Interactions of fungi with other organisms. Plant Biosyst 147:208–218Google Scholar
  148. Petersen PJ, Wang TZ, Dushin RG, Bradford PA (2004) Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptides derivate of the natural product mannopeptimycin alpha and other antimicrobial agents against gram-positive clinical isolates. Antimicrob Agents Chemother 48:739–746PubMedPubMedCentralGoogle Scholar
  149. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316PubMedGoogle Scholar
  150. Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312PubMedGoogle Scholar
  151. Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain Bacillus cereus. Lett Appl Microbiol 25:284–288PubMedGoogle Scholar
  152. Pliego C, De Weert S, Lamers G, De Vicente A, Bloemberg G, Cazorla FM et al (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol 10:3295–3304PubMedGoogle Scholar
  153. Pradeepa V, Jennifer M (2013) Screening and characterization of endophytic bacteria isolated from Tabernaemontana divaricata plant for cytokinin production. Adv BioTech 13:12–17Google Scholar
  154. Quadt-Hallmann A, Kloepper JW (1996) Immunological detection and localization of cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol 42:1144–1154Google Scholar
  155. Rakh RR, Raut LS, Dalvi SM, Manwar AV (2011) Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas cf. monteilii 9. Recent Res Sci Technol 3:26–34Google Scholar
  156. Ramaiah N, Hill RT, Chun J, Ravel J, Matte MH, Straube WL et al (2000) Use of a ChiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay. FEMS Microbiol Ecol 34:63–71PubMedGoogle Scholar
  157. Ramyabharathi SA, Raguchander T (2014) Efficacy of secondary metabolites produced by Bacillus subtilis EPCO16 against tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. J Mycol Plant Pathol 44:148–153Google Scholar
  158. Ray S, Singh V, Bisen K, Keswani C, Singh S, Singh HB (2017) Endophytomicrobiont: a multifaceted beneficial interaction. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, Wallingford, pp 218–233Google Scholar
  159. Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54Google Scholar
  160. Romero D, De Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440PubMedGoogle Scholar
  161. Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344PubMedGoogle Scholar
  162. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837PubMedGoogle Scholar
  163. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedGoogle Scholar
  164. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB et al (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525PubMedGoogle Scholar
  165. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932PubMedPubMedCentralGoogle Scholar
  166. Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS One 9:1–12Google Scholar
  167. Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008a) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodule of Kudzu (Pueraria thunbergiana) and their effect on wheat seedlings growth. Curr Microbiol 56:134–139PubMedGoogle Scholar
  168. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S et al (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175PubMedGoogle Scholar
  169. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249PubMedGoogle Scholar
  170. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36PubMedGoogle Scholar
  171. Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strobilifera. Appl Microbiol Biotechnol 85:371–381PubMedGoogle Scholar
  172. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, SingaporeGoogle Scholar
  173. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, WallingfordGoogle Scholar
  174. Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK et al (2012) Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65:330–336PubMedGoogle Scholar
  175. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763PubMedGoogle Scholar
  176. Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of rootlesion nematodes in the potato root zone. Plant Soil 262:241–249Google Scholar
  177. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30Google Scholar
  178. Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (2002) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360–369Google Scholar
  179. Suzuki T, Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2005) Visualization of infection of an endophytic Actinomycete Streptomyces galbus in leaves of tissue-cultured Rhododendron. Actinomycetologica 19:7–12Google Scholar
  180. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202PubMedGoogle Scholar
  181. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl J Environ Microbiol 75:748–757Google Scholar
  182. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:1–15Google Scholar
  183. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015PubMedGoogle Scholar
  184. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300PubMedPubMedCentralGoogle Scholar
  185. Torimiro N, Okonji RE (2013) A comparative study of pectinolytic enzyme production by Bacillus species. Afr J Biotechnol 12:6498–6503Google Scholar
  186. Turner JT, Lampel JS, Stearman RS, Sundin GW, Gunyuzlu P, Anderson JJ (1991) Stability of the δ-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528PubMedPubMedCentralGoogle Scholar
  187. van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrencht, p 521–574Google Scholar
  188. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense related proteins in infected plants. Ann Rev Phytopathol 44:135–162Google Scholar
  189. van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedGoogle Scholar
  190. Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380PubMedGoogle Scholar
  191. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141PubMedGoogle Scholar
  192. Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429PubMedGoogle Scholar
  193. Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol 2014:1–5Google Scholar
  194. Vethavalli S, Sudha SS (2012) In vitro and in silico studies on biocontrol agent of bacterial strains against Fusarium oxysporum f. sp. lycopersici. Res Biotechnol 3:22–31Google Scholar
  195. Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N et al (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778–1785. CrossRefPubMedGoogle Scholar
  196. Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Druzhinins IS (eds) Environmental and microbial relationships: the Mycota IV. Springer, Berlin, pp 127–146Google Scholar
  197. Voisard C, Keel C, Hass D, Defago G (1989) Cyanide production by Pseudomonas fluorescens suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedPubMedCentralGoogle Scholar
  198. Wang Y, Zeng Q, Zhang Z, Yan R, Zhu D (2010) Antagonistic bioactivity of an endophytic bacterium H-6. Afr Biotechnol 9:6140–6145Google Scholar
  199. Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedPubMedCentralGoogle Scholar
  200. Yazdani M, Bahmanyar M (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol 49:90–92Google Scholar
  201. Yoo JJ, Eom AH (2012) Molecular identification of endophytic fungi isolated from needle leaves of conifers in Bohyeon mountain, Korea. Mycobiology 40:231–235PubMedPubMedCentralGoogle Scholar
  202. You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ et al (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22:1549–1556PubMedGoogle Scholar
  203. Yuan J, Raza W, Shen QR, Huang QW (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp cubense. Appl Environ Microbiol 78:5942–5944PubMedPubMedCentralGoogle Scholar
  204. Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM et al (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:1–8Google Scholar
  205. Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89:817–882PubMedGoogle Scholar
  206. Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP et al (2012) Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. J Bacteriol 194:1280–1281PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rania Aydi Ben Abdallah
    • 1
  • Hayfa Jabnoun-Khiareddine
    • 1
  • Mejda Daami-Remadi
    • 1
  1. 1.UR13AGR09 – Integrated Horticultural Production in the Tunisian Centre-East, Regional Research Centre on Horticulture and Organic AgricultureUniversity of SousseChott-MariemTunisia

Personalised recommendations