A Deeper Insight into the Symbiotic Mechanism of Rhizobium spp. from the Perspective of Secondary Metabolism

  • Prachi Singh
  • Rahul Singh Rajput
  • Ratul Moni Ram
  • H. B. Singh


Rhizobia are group of organism, known globally for their nitrogen-fixing ability. In addition to nitrogen fixation, they significantly contribute to plant growth promotion and disease control. Rhizobial aptness for plant growth promotion and antagonism against a wide range of pathogens is due to its ability to produce a wide range of secondary metabolites such as HCN, siderophore, antibiotics, rhizobitoxin, lytic enzymes, IAA, phosphate solubilization and induced systemic resistance. Rhizobial inoculants, ascribed with multiple roles of nitrogen fixation, growth promotion and disease suppression, have strengthened crop productivity. This compilation urges the need to recognize and exploit the potential multifaceted secondary metabolites of rhizobia for biological control and growth promotion.


Rhizobium Nodules Siderophore PGPR Legumes 


  1. Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Prot Sci 48:149–155Google Scholar
  2. Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779. CrossRefGoogle Scholar
  3. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A, Marchetti M (2008) Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18(9):1472–1483PubMedPubMedCentralGoogle Scholar
  4. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237PubMedGoogle Scholar
  5. Antoun H, Bordeleau LM, Gagnon C (1978) Antagonisme entre Rhizobium meliloti at Fusarium oxysporum en relation avec lefficacite symbiotique. Can J Plant Sci 58:75–78Google Scholar
  6. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus Sativus L.). Plant Soil 204:57–67Google Scholar
  7. Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35(1):443–478Google Scholar
  8. Arfaoui A, Sifi B, El Hassni M, El Hadrami I, Boudabbous A, Chérif M (2005) Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol J 4:35–42Google Scholar
  9. Arfaoui A, Sifi B, Boudabous A, El Hadrami I, Cherif M (2006) Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f.sp ciceris, the causal agent of Fusarium wilt of chickpea. J Plant Pathol 88:67–75Google Scholar
  10. Arora N, Kang S, Maheshwari D (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  11. Barber MS, Giesecke U, Reichert A, Minas W (2004) Industrial enzymatic production of cephalosporin-based b-lactams. Adv Biochem Engin/Biotechnol 88:179–216Google Scholar
  12. Bardin SD, Huang H-C, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Botany 82:291–296Google Scholar
  13. Bashan Y (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51(5):1089–1098PubMedPubMedCentralGoogle Scholar
  14. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotech adv 16(4):729–770Google Scholar
  15. Beauchamp CJ, Dion P, Kloepper JW, Antoun H (1991) Physiological characterization of opine-utilizing rhizobacteria for traits related to plant growth-promoting activity. Plant Soil 132:273–279. CrossRefGoogle Scholar
  16. Beck DP (1991) Suitability of charcoal-amended mineral soil as carrier for Rhizobium inoculants. Soil Biol Biochem 23:41–44Google Scholar
  17. Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Kno¨llchen. Bot Ztg 46:740–750Google Scholar
  18. Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant nitrogen-fixing symbiosis. In: Triplett E (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 207–224Google Scholar
  19. Berdy J (2005) Bioactive microbial metabolites a personal view. J Antibiot 58:1–26PubMedGoogle Scholar
  20. Bergman K, Gulash-Hofee M, Hovestadt RE, Larosiliere RC, Ronco PG, Su L (1988) Physiology of behavioral mutants of Rhizobium meliloti: evidence for a dual chemotaxis pathway. J Bacteriol 170:3249–3254PubMedPubMedCentralGoogle Scholar
  21. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215PubMedGoogle Scholar
  22. Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650. CrossRefGoogle Scholar
  23. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697. CrossRefGoogle Scholar
  24. Brockwell J, Gault RR, Chase DL, Hely FW, Zorin M, Corbin EJ (1980) An appraisal of practical alternatives to legume seed inoculation: field experiments on seed bed inoculation with solid and liquid inoculants. Aust J Agri Res 31(1):47–60Google Scholar
  25. Buonassisi AJ, Copeman RJ, Pepin HS, Eaton GW (1986) Effect of Rhizobium spp. on Fusarium solani f. sp. phaseoli. Can J Plant Pathol 8:140–146Google Scholar
  26. Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacterial 170:3164–3169Google Scholar
  27. Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59:1647–1664Google Scholar
  28. Carson KC, Holliday S, Glenn AR, Dilworth MJ (1992) Siderophore and organic acid production in root nodule bacteria. Arch Microbiol 157:264–271PubMedGoogle Scholar
  29. Carson KC, Meyer J-M, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21. CrossRefGoogle Scholar
  30. Chakraborty U, Purkayastha RP (1984) Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina. Can J Microbiol 30:285–289PubMedGoogle Scholar
  31. Chamber MA (1983) Influence of several methods for rhizobial inoculation on nodulation and yield of soybeans. Plant Soi1 74:203–209Google Scholar
  32. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130Google Scholar
  33. Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97PubMedPubMedCentralGoogle Scholar
  34. Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK (1995) Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol 61:1959–1967PubMedPubMedCentralGoogle Scholar
  35. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38(4):392–397Google Scholar
  36. Chernin L, Ismailov Z, Haran S, Chet I (1955) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61(5):1720–1726Google Scholar
  37. Corbett JR (1974) Pesticide design. In: The biochemical mode of action of pesticides. Academic, London, pp 44–86Google Scholar
  38. Crowley DE, Gries D (1994) Modeling of iron availability in the plant rhizosphere. In: Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, Boca Raton, pp 199–224Google Scholar
  39. Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62(5):425–435Google Scholar
  40. Date R, Roughley R (1977) Preparation of legume seed inoculants a treatise on dinitrogen fixation section IV agronomy and ecology. Wiley, New York, pp 243–275Google Scholar
  41. Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 1:259–264PubMedGoogle Scholar
  42. Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fietcher AI (ed) Advances in biochemical engineering/biotechnology: history of modern biotechnology, vol 2. Springer, Berlin, p 39Google Scholar
  43. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16PubMedGoogle Scholar
  44. Dénarié J, Cullimore J (1993) Lipo-oligosaccharide nodulation factors: a new class of signalling molecules mediating recognition and morphogenesis. Cell 74:951–954PubMedGoogle Scholar
  45. Denison RF, Kiers ET (2004) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect 6(13):1235–1239PubMedGoogle Scholar
  46. Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Ind J Exp Biol 41:1160–1164Google Scholar
  47. Diby P, Anandaraj M, Kumar A, Sarma YR (2005) Antagonistic mechanisms of fluorescent pseudomonads against Phytophthora capsici in black pepper (Piper nigrum L.). J Spices Aromatic Crops 14(2):122–129Google Scholar
  48. Dihazi A, Jaiti F, Zouine J, Hassni ME, Hadrami IE (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum f. sp. albedinis. Phytopathol Mediterr 42:9–16Google Scholar
  49. Dixon ROD, Wheeler CT (1986) Nitrogen fixation in plants. Blackie and Son, Glasgow. CrossRefGoogle Scholar
  50. Dubey RC, Maheshwari DK (2011) Role of PGPR in integrated nutrient management of oil seed crops. In: Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 1–15Google Scholar
  51. Dutta S, Mishra A, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461Google Scholar
  52. Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163Google Scholar
  53. Essalmani H, Lahlou H (2002) In vitro antagonistic activity of some microorganisms towards Fusarium oxysporum f. sp. lentis (french). Crypto Mycol 23:221–234Google Scholar
  54. Estevez de Jensen C, Percich JA, Graham PH (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res 74:107–115. CrossRefGoogle Scholar
  55. Fisher RF, Long SR (1992) Rhizobium-plmt signal exchange. Nature 357:655–660PubMedGoogle Scholar
  56. Fouilleux G, Revellin C, Hartmann A, Catroux G (1996) Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L) merr.) using granular inoculants amended with nutrients. FEMS Microbiol Ecol 20(3):173–183Google Scholar
  57. Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges 7:332–346Google Scholar
  58. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68(2):280–300PubMedPubMedCentralGoogle Scholar
  59. Ganesan S, Kuppusamy RG, Sekar R (2007) Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using Rhizobium and Trichoderma harzianum (ITCC-4572). Turk J Agric For 31:103–108Google Scholar
  60. Gao X, Lu X, Wu M, Zang H, Pan R, Tian J, Li S, Liao H (2012) Coinoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS One 7:e33977PubMedPubMedCentralGoogle Scholar
  61. Gehring PJ, Mohan RJ, Watamare PG (1993) Solvents, fumigants and related compounds. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxiocology, vol 2. Academic, San Diego, pp 646–649Google Scholar
  62. Gonzalez JB, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Indian J Biotechnol 2:322–333Google Scholar
  63. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103(10):3834–3839PubMedGoogle Scholar
  64. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377. CrossRefGoogle Scholar
  65. Graham-Weis L, Bennet ML, Paau AS (1987) Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Appl Environ Microbiol 53:2138–2140Google Scholar
  66. Guan C, Pawlowski K, Bisseling T (1995) Nodulation in legumes and Actinorhizal plants. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Current plant science and biotechnology in agriculture. Springer, Dordrecht, pp 49–59Google Scholar
  67. Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48(1):743–772PubMedGoogle Scholar
  68. Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303PubMedPubMedCentralGoogle Scholar
  69. Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing charcoal rot of peanut. BioControl 51:821–835Google Scholar
  70. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93Google Scholar
  71. Hafeez FY, Naeem FI, Naeem R, Zaidi AH, Malik KA (2005) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ Exp Bot 54:142–147. CrossRefGoogle Scholar
  72. Handberg K, Stougaard JS (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496Google Scholar
  73. Hegde SV, Brahmaprakash GP (1992) A dry granular inoculant of Rhizobium for soil application. Plant Soil 144(2):309–311Google Scholar
  74. Hemissi I, Mabrouk Y, Abdi N, Bouraoui M, Saidi M, Sifi B (2011) Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr J Microbiol Res 5:4080–4090Google Scholar
  75. Hirsch PR (1979) Plasmid-determined bacteriocin production by Rhizobium leguminosarum. Microbiology 113:219–228. CrossRefGoogle Scholar
  76. Hirsch PR, Van Montagu M, Johnston AWB, Brewin NJ, Schell J (1980) Physical identification of bacteriocinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarum. Microbiology 120:403–412. CrossRefGoogle Scholar
  77. Howieson JG, Brockwell J (2005) Nomenclature of legume root nodule bacteria in 2005 and implications for collection of strains from the field. In: Brockwell J (ed) 14th Australian nitrogen fixation conference. The Australian Society for Nitrogen Fixation, Katoomba, pp 17–23Google Scholar
  78. Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37. CrossRefGoogle Scholar
  79. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Evo microbiol 47(3):895–898Google Scholar
  80. Jayasinghearachchi HS, Seneviratne G (2004) A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol Fert Soils 40:432–434. CrossRefGoogle Scholar
  81. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32(1):136–139Google Scholar
  82. Kacem M, Kazouz F, Merabet C, Rezki M, de Lajudie P, Bekki A (2009) Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas Aceites 60(2):139–146Google Scholar
  83. Kannenberg EL, Brewin NJ (1989) Expression of a cell surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and pH. J Bacteriol 171(9):4543–4548PubMedPubMedCentralGoogle Scholar
  84. Kawaguchi T, Azuma M, Horinouchi S, Beppu T (1988) Effect of B-factor and its analogues on rifamycin biosynthesis in Nocardia sp. J Antibiot 41:360–365PubMedGoogle Scholar
  85. Khavazi K, Rejali F, Seguin P, Miransari M (2007) Effects of carrier, sterilisation method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzym Microb Technol 41:780–784Google Scholar
  86. Knowles CJ, Bunch AW (1986) Microbial cyanide metabolism. Adv Microbiol Physiol 27:73–111Google Scholar
  87. Kostov O, Lynch JM (1998) Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J Microbiol Biotechnol 14(3):389–397Google Scholar
  88. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598. CrossRefGoogle Scholar
  89. Kumar H, Dubey RC, Maheshwari DK (2011) Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonella foenumgraecum L.). Crop Prot 30:1396–1403. CrossRefGoogle Scholar
  90. Kumari S, Khanna V (2014) Effect of antagonistic Rhizobacteria coinoculated with Mesorhizobium ciceris on control of fusarium wilt in chickpea (Cicer arietinum L.). Afr J Microbiol Res 8:1255–1265Google Scholar
  91. Kurrey D, Lakpale R, Rajput RS (2016) Growth behavior, nodulation and Rhizobium population, as affected by combined application of herbicide and insecticide in soybean (Glycine max L.). J Pure Appl Microbio 10(4):2931–2936Google Scholar
  92. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(1):2–17PubMedGoogle Scholar
  93. Libbenga KR, Harkes PAA (1973) Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L. Planta 114:17–28PubMedGoogle Scholar
  94. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, Pée KHV (2000) Natural products with antifungal activity from pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695Google Scholar
  95. Lloyd CW, Pearce KJ, Rawlins DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. CellMot Cytoskel 8:27–36Google Scholar
  96. Lodwig EM, Poole PS (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22(1):37–38Google Scholar
  97. MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144(2):615–622PubMedPubMedCentralGoogle Scholar
  98. Makoi JHJR, Bambara S, Ndakidemi PA (2010) Rhizosphere phosphatase enzyme activities and secondary metabolites in plants as affected by the supply of Rhizobium, lime and molybdenum in Phaseolus vulgaris L. Aust J Crop Sci 4(8):590–597Google Scholar
  99. Malajczuk N, Pearce M, Litchfield RT (1984) Interactions between Phytophthora cinnamomi and Rhizobium isolates. Trans Br Mycol Soc 82:491–500. CrossRefGoogle Scholar
  100. Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319Google Scholar
  101. Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 15–64Google Scholar
  102. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of Pyocyanin and phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mazen MM, El-Batanony NH, Abd El-Monium MM, Massoud ON (2008) Cultural filtrate of Rhizobium spp. and arbuscular mycorrhiza are potential biological control agents against root rot fungal diseases of Faba bean. Global J Biotechnol Biochem 3(1):32–41Google Scholar
  104. Mehta S, Nautiyal SC (2001) An efficient method for qualitative screening of phosphate solubilizing bacteria. Curr Microbiol 43:51–56PubMedGoogle Scholar
  105. Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389PubMedGoogle Scholar
  106. Modi M, Shah KS, Modi VV (1985) Isolation and characterisation of catechol-like siderophore from cowpea Rhizobium RA-1. Arch Microbiol 141:156–158. CrossRefGoogle Scholar
  107. Mourad K, Fadhila K, Chahinez M, Meriem R, Philippe DL, Abdelkader B (2009) Antimicrobial activities of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas Aceites 60(2):139–146Google Scholar
  108. Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885PubMedPubMedCentralGoogle Scholar
  109. Nadia H, Massoud O, Mazen M, El-Monium MA (2007) The inhibitory effects of cultural filtrates of some wild Rhizobium spp. on some faba bean root rot pathogens and their antimicrobial synergetic effect when combined with Arbuscular mycorrhiza (AM). World J Agric Sci 3:721–730Google Scholar
  110. Nap JP, Bisseling T (1990) Nodulin function and nodulin gene regulation in root nodule development. In: Gresshoff PM (ed) The molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 181–229. ISBN 0-8493-6188-5Google Scholar
  111. Nautiyal CS (1997) Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiol Ecol 23:145–158. CrossRefGoogle Scholar
  112. Newcomb W (1981a) Nodule morphogenesis and differentiation [Rhizobium]. Int Rev Cytol Suppl 13:247–298Google Scholar
  113. Newcomb W (1981b) Nodule morphogenesis. In Bourne GH, Danielli JF (eds) Int Rev Cytology, Supplement 13. Academic, New York pp 246–298Google Scholar
  114. Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. US patent 570:813Google Scholar
  115. O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22(4):552–558PubMedGoogle Scholar
  116. O’Gara F, Shanmugam KT (1976) Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as NH4 +. Biochim Biophys Acta 437(2):313–321PubMedGoogle Scholar
  117. Omar SA, Abd-Alla MH (1998) Biocontrol of fungal root rot diseases of crop plants by the use of rhizobia and bradyrhizobia. Folia Microbiol 43:431–437. CrossRefGoogle Scholar
  118. Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142Google Scholar
  119. Patel HN, Chakraborty RN, Desai SB (1988) Isolation and partial characterization of phenolate siderophore from Rhizobium leguminosarum IARI 102. FEMS Microbiol Let 56(2):131–134Google Scholar
  120. Pawlowski K, Bisseling T (1997) Legume and actinorhizal root nodule formation. In: Plant roots-from cells to systems. Springer, Dordrecht, pp 137–142Google Scholar
  121. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedPubMedCentralGoogle Scholar
  122. Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB (1993) J Am Chem Soc 115:3950–3956Google Scholar
  123. Phillips DA, Kapulnik Y (1995) Plant isoflavonoids, pathogens and symbionts. Trends Microbiol 3(2):58–66PubMedGoogle Scholar
  124. Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  125. Prasanna R, Kumar A, Babu S, Chawla G, Chaudhary V, Singh S, Gupta V, Nain L, Saxena AK (2013) Deciphering the biochemical spectrum of novel cyanobacterium-based biofilms for use as inoculants. Biol Agric Hortic 29:145–158. CrossRefGoogle Scholar
  126. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton van Leeuwen 81:537–547. CrossRefGoogle Scholar
  127. Ramos T, Bellaj ME, Idrissi-Tourane AE, Daayf F, Hadrami IE (1997) Les Phénolamides des Rachis de Palmes, Composants de la Réaction de Défense du Palmier Dattier vis-à-vis de Fusarium oxysporum f.sp. albedinis, Agent Causal du Bayoud. J Phytopathol 145:487–493Google Scholar
  128. Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173:861–872PubMedGoogle Scholar
  129. Ridge RW (1988) Investigation of the cytoskeleton of freeze substituted root hairs. 6ot. Mag Tokyo 101:427–441Google Scholar
  130. Rioux CR, Jordan DC, Rattray JBM (1986) Iron requirement of Rhizobium leguminosarum and secretion of anthranilic acid during growth on an iron-deficient medium. Arch Biochem 248:175–182PubMedGoogle Scholar
  131. Robertson JG, Lyttleton P, Bullivant S, Grayston GF (1978) Membranes in lupin root nodules. I. The role of Golgi bodies in the biogenesis of Infection threads and peribacteroid membranes. J Cell Sci 30:129–149PubMedGoogle Scholar
  132. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedGoogle Scholar
  133. Ronchi AL, Grassano A, Balatti AP (1997) Perlite as a carrier for legume inoculants. Agrochimica 41:186–195Google Scholar
  134. Roth LE, Stacey G (1989) Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49(1):13–23PubMedGoogle Scholar
  135. Roughley RJ, Vincent J (1967) Growth and survival of Rhizobium spp. in peat culture. J Appl Bacteriol 30:362–376Google Scholar
  136. Roy N, Bhattacharyya P, Chakrabartty PK (1994) Iron acquisition during growth in an iron deficient medium by Rhizobium sp. isolated from Cicer arietinum. Microbiology 140:2811–2820Google Scholar
  137. Rugheim AM, Abdelgani ME (2009) Effects of microbial and chemical fertilization on yield and seed quality of faba bean. 9th conference of the African crop science society: science and technology supporting food security in Africa. Cape Town, South Africa 28 September–1 October 2009Google Scholar
  138. Ruiz Duenas FJ, Martinez MJ (1996) Enzymatic activities of Trametes versicolor and Pleurotus eryngii, implicated in biocontrol of Fusarium oxysporum f. sp. lycopersici. Curr Microbiol 32:151–155Google Scholar
  139. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36(2):146–167PubMedGoogle Scholar
  140. Sagolshemcha R, Devi YN, Singh WR (2017) Plant growth promoting effect and biocontrol potential of Rhizobium spp. against Macrophomina phaseolina. Int J Curr Microbiol App Sci 6(6):2695–2701Google Scholar
  141. Sáncheza AC, Gutiérrezc RT, Santanab RC, Urrutiab AR, Fauvarta M, Michielsa J, Vanderleydena J (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur J Soil Biol 62:105–112Google Scholar
  142. Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396Google Scholar
  143. Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743. CrossRefGoogle Scholar
  144. Shaban W, El-Bramawy M (2011) Impact of dual inoculation with Rhizobium and Trichoderma on damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. Intl Res J Agric Sci Soil Sci 1:98–108Google Scholar
  145. Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142. CrossRefGoogle Scholar
  146. Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fert Soils 36:260–268Google Scholar
  147. Siddiqui IA, Ehteshamul-Haque S, Zaki MJ, Abdul G (2000) Effect of urea on the efficacy of Bradyrhizobium sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. Sarhad J Agric 16:403–406Google Scholar
  148. Siddiqui IA, Shaukat SS, Hussain-Sheikh I, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650Google Scholar
  149. Singh PK, Singh M, Vyas D (2010) Biocontrol of fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosorum biovar. Caryologia 63:349–353Google Scholar
  150. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, SingaporeGoogle Scholar
  151. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, LondonGoogle Scholar
  152. Smith MJ, Shoolery JN, Schwyn B, Holden I, Neilands JB (1985) Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc 107:1739–1743. CrossRefGoogle Scholar
  153. Smitha M, Singh R (2014) Biocontrol of phytopathogenic fungi using mycolytic enzymes produced by rhizospheric bacteria of Cicer arietinum. Indian J Agric Biochem 27:215–218Google Scholar
  154. Spaink H (1992) Rhizobial lipopolysaccharides: answers and questions. Plant Mol Biol 20:977–986PubMedGoogle Scholar
  155. Sparow SD, Ham GE (1983) Survival of Rhizobium phaseoli in six carrier materials. Agron J 75:181–184Google Scholar
  156. Sridevi M, Mallaiah K (2008) Factors effecting chitinase activity of Rhizobium sp. from Sesbania sesban. Biologia 63:307–312Google Scholar
  157. Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258Google Scholar
  158. Stokkermans TJW, Peters NK (1994) Bradyrhizobium elkanii lipooligosaccharide signal induce complete nodule structures on Glycine soja Siebold et Zucc. Planta 193:413–420PubMedGoogle Scholar
  159. Sutton WD, Pankhurst CE, Craig AS (1981) The rhizobium bacteroid state. In: Bourne GH, Danielli JF (eds) International review of cytology, supplement 13. Academic, New York, pp 149–177Google Scholar
  160. Szekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 233:215–222PubMedGoogle Scholar
  161. Temprano F, Albareda M, Camacho M, Daza A, Santamaría C, Rodríguez-Navarro ND (2002) Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol 5:81–86. CrossRefPubMedGoogle Scholar
  162. Triplett EW, Barta TM (1987) Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv. trifolii strain T24 on clover. Plant Physiol 85:335–342PubMedPubMedCentralGoogle Scholar
  163. Triveni S, Prasanna R, Shukla L, Saxena AK (2013) Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Ann Microbiol 63:1147–1156. CrossRefGoogle Scholar
  164. Van Kammen A (1984) Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol Biol Rep 2:43–45Google Scholar
  165. van Rhijn P, Vanderleyden J (1995) The Rhizobium–plant symbiosis. Microb Rev 59(1):124–142Google Scholar
  166. VandenBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infection thread matrix and the inter cellular space identified by immune cytochemical analysis of pea nodules and uninfected roots. EMBO J 8(2):335–341PubMedPubMedCentralGoogle Scholar
  167. Verdine GL (1996) The combinatorial chemistry of nature. Nature 384:11–13PubMedGoogle Scholar
  168. Verma DPS, Hong Z (1996) Biogenesis of the peribacteriod membrane in root nodules. Trends Microbiol 4(9):364–368PubMedGoogle Scholar
  169. Verma D, Long S (1983) Molecular biology of Rhizobium plant symbiosis. In: Jeon K (ed) Intracellular symbiosis. Academic, New York, pp 211–245Google Scholar
  170. Vincent J (1974) Root nodule symbioses with Rhizobium. In: Quispel A (ed) Biology of nitrogen fixation. North Holland Press, Amsterdam, pp 265–341Google Scholar
  171. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  172. Weidemann C, Tenhaken R, Höhl U, Barz W (1991) Medicarpin and maackiain 3-O-glucoside-6′-O-malonate conjugates are constitutive compounds in chickpea (Cicer arietinum L.) cell cultures. Plant Cell Rep 10:371–374. CrossRefPubMedGoogle Scholar
  173. Weigand F, Köster J, Weltzien H, Barz W (1986) Accumulation of phytoalexins and isoflavone glucosides in a resistant and a susceptible cultivar of Cicer arietinum during infection with Ascochyta rabiei. J Phytopathol 115:214–221Google Scholar
  174. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin a by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. CrossRefGoogle Scholar
  175. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989PubMedPubMedCentralGoogle Scholar
  176. Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel JC, Gillis M, Dreyfus B, de Lajudie P (2004) Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27(3):380–395PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Prachi Singh
    • 1
  • Rahul Singh Rajput
    • 1
  • Ratul Moni Ram
    • 1
  • H. B. Singh
    • 1
  1. 1.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations