Advertisement

Biological Control of Nematodes by Plant Growth Promoting Rhizobacteria: Secondary Metabolites Involved and Potential Applications

  • Marieta Marin-BruzosEmail author
  • Susan J. Grayston
Chapter

Abstract

Plant-parasitic nematodes are one of the most destructive agronomic pests. During several decades, the control of this pest on agricultural crops has depended on chemical pesticides. These chemicals are very toxic with high potential to pollute the environment. Nowadays, the search for substitute products has become a priority. In this sense, the biological control agents have arisen as an environmentally friendly alternative. Different rhizobacterial strains are able to control nematodes improving plant health through the production of secondary metabolites. The aim of this chapter is to review the secondary metabolites produced by rhizospheric bacteria involved in the control of plant-parasitic nematodes. The use of these compounds could help to overcome the problem related with the survival of the biocontrol agents when introduced in new ecosystems. In the same way, the study of the metabolic pathways that lead to the production of these compounds can help to discern the conditions to trigger their production and its consequent activity in the rhizosphere.

Keywords

Nematodes Biological control Secondary metabolites Rhizobacteria PGPR 

References

  1. Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C (2017) Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 33(7):131PubMedGoogle Scholar
  2. Abbasi M, Ahmed N, Zaki M, Shuakat S, Khan D (2014) Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant Soil 375(1/2):159–173Google Scholar
  3. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 Suppl):1044–1051PubMedPubMedCentralGoogle Scholar
  4. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972PubMedPubMedCentralGoogle Scholar
  5. Bravo A, Gill SS, Sobero M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435PubMedGoogle Scholar
  6. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448.  https://doi.org/10.3389/fphys.2012.00448 PubMedPubMedCentralGoogle Scholar
  7. Castaneda-Alvarez C, Prodan S, Rosales IM, Aballay E (2016) Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne & Allen. J Appl Microbiol 120(2):413–424PubMedGoogle Scholar
  8. de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity, and activity of 2,4-Diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in dutch take-all decline soils. Phytopathology 93(1):54–63PubMedGoogle Scholar
  9. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39PubMedGoogle Scholar
  10. El-Hadad ME, Mustafa MI, Selim SM, Mahgoob AEA, El-Tayeb TS, Abdel Aziz NH (2010) In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World J Microbiol Biotechnol 26:2249–2256Google Scholar
  11. Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16PubMedGoogle Scholar
  12. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183(21):6207–6214PubMedPubMedCentralGoogle Scholar
  13. Galper S, Cohn E, Chet I (1990) Nematicidal effect of collagen amended soil and the influence of protease and collagenase. Rev Nematol 13:67–71Google Scholar
  14. Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22PubMedPubMedCentralGoogle Scholar
  15. Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:28756.  https://doi.org/10.1038/srep28756 PubMedPubMedCentralGoogle Scholar
  16. Geng C, Nie X, Tang Z, Zhang Y, Lin J, Sun M, Peng D (2016) A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci Rep 6:25012PubMedPubMedCentralGoogle Scholar
  17. Glick B (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–33PubMedGoogle Scholar
  18. Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74(22):6997–7001PubMedPubMedCentralGoogle Scholar
  19. Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727PubMedGoogle Scholar
  20. Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterization of volatiles produced from Bacillus megaterium YFM 3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422Google Scholar
  21. Iatsenko I, Boichenko I, Sommer RJ (2014) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Goodrich-Blair H, ed. J Appl Environ Microbiol 80(10):3266–3275Google Scholar
  22. Johnstone IL (1994) The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. BioEssays 16:171–178PubMedGoogle Scholar
  23. Ju S, Lin J, Zheng J, Wang S, Zhou H, Sun M (2016) Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. J Appl Environ Microbiol 82(7):2112–2120Google Scholar
  24. Jung WJ, Kim KY, Park YS et al (2014) Purification and properties of a Meloidogyne antagonistic chitinase from Lysobacter capsici YS1215. Nematology 16:63–72Google Scholar
  25. Kempster VN, Davies KA, Scott ES (2001) Chemical and biological induction of resistance to the clover cyst nematode (Heterodera trifolii) in white clover (Trifolium repens). Nematology 3:35–43Google Scholar
  26. Kokalis-Burelle N (2015) Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. J Nematol 47(3):207–213PubMedPubMedCentralGoogle Scholar
  27. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48(9):772–786PubMedGoogle Scholar
  28. Lee YS, Nguyen XH, Naing KW et al (2014) Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants. Indian J Microbiol 55:74–80Google Scholar
  29. Li XQ, Tan A, Voegtline M, Bekele S, Chen CS, Aroian RV (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. BioControl 47:97–102Google Scholar
  30. Li L, Ma M, Liu Y, Zhou J, Qu Q, Lu K, Fu D, Zhang K (2011) Induction of trap formation in nematode-trapping fungi by a bacterium. FEMS Microbiol Lett 322:157–151PubMedGoogle Scholar
  31. Lian LH, Tian BY, Xiong R et al (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262–269PubMedGoogle Scholar
  32. Liu X, Xiang M, Che Y (2009) The living strategy of nematophagous fungi. Mycoscience 50(1):20–25Google Scholar
  33. Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M (2010) Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 285(50):39191–39200PubMedPubMedCentralGoogle Scholar
  34. Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090PubMedGoogle Scholar
  35. Luo X, Chen L, Huang Q et al (2013a) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. J Appl Environ Microbiol 79(2):460–468Google Scholar
  36. Luo X, Chen L, Huang Q, Zheng J, Zhou W, Peng D, Ruan L, Sun M (2013b) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. J Appl Environ Microbiol 79(2):460–468Google Scholar
  37. Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199PubMedGoogle Scholar
  38. Marin M, Mena J, Franco R, Pimentel E, Sánchez I (2010) Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C 924 and Glomus fasciculatum and Glomus clarum fungi on lettuce mycorrhizal colonization and foliar weight. Biotecnol Apl 27(1):48–51Google Scholar
  39. Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699PubMedPubMedCentralGoogle Scholar
  40. McSorley R (2011) Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J Nematol 43:69–81PubMedPubMedCentralGoogle Scholar
  41. Meadows R (2013) Researchers develop alternatives to methyl bromide fumigation. Calif Agric 67(3):125–127.  https://doi.org/10.3733/ca.v067n03p125 Google Scholar
  42. Mendoza A, Kiewnick S, Sikora R (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Tech 18(4):377–389Google Scholar
  43. Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood. Nematologica 38:227–236Google Scholar
  44. Meyer SLF, Halbrendt JM, Carta LK et al (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41(4):274–280PubMedPubMedCentralGoogle Scholar
  45. Miller PM, Sands DC (1977) Effects of hydrolytic enzymes on plant-parasitic nematodes. J Nematol 9:192–197PubMedPubMedCentralGoogle Scholar
  46. Mota MS, Gomes CB, Souza J, Moura AB (2017) Bacterial selection for biological control of plant disease: criterion determination and validation. Braz J Microbiol 48(1):62–70PubMedGoogle Scholar
  47. Nandi M, Selin C, Brassinga AKC et al (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10(4):e0123184.  https://doi.org/10.1371/journal.pone.0123184 PubMedPubMedCentralGoogle Scholar
  48. Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Oliveira S, Mota M (2013) The use of the ACC deaminase producing bacterium Pseudomonas putida UW4 as a biocontrol agent for pine wilt disease. BioControl 58:427–433Google Scholar
  49. Nikoo S, Sahebani N, Aminian H et al (2014) Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. J Plant Protect Res 54(4):383–389Google Scholar
  50. Niu Q, Huang X, Zhang L et al (2006) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185:439–448PubMedGoogle Scholar
  51. Niu Q, Huang X, Zhang L, Xu J, Yang D, Wei K, Niu X, An Z, Wennstrom Bennett J, Zou C, Yang J, Zhang KQ (2010) A Trojan horse mechanism of bacterial pathogenesis against nematodes. PNAS 107(38):16631–16636PubMedGoogle Scholar
  52. Oliveira DF et al (2009) Activity of amino acids produced by Paenibacillus macerans and from commercial sources against the root-knot nematode Meloidogyne exigua. Eur J Plant Pathol 124(1):57–63Google Scholar
  53. Oliveira DF, Santos Junior HM, Dos Nunes AS et al (2014) Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. An Acad Bras Cienc 86:525–538PubMedGoogle Scholar
  54. Olson S (2015) An analysis of the biopesticide market now and where it is going. The biopesticide market. Outlooks Pest Manage 26:203–206.  https://doi.org/10.1564/v26_oct_04 Google Scholar
  55. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedPubMedCentralGoogle Scholar
  56. Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18(2):129–134PubMedPubMedCentralGoogle Scholar
  57. Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science 148(3669):524–526PubMedGoogle Scholar
  58. Rucker CJ, Zachariah K (1986) The influence of bacteria on trap induction in predacious hyphomycetes. Can J Bot 65:1160–1162Google Scholar
  59. Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69(2):167–179Google Scholar
  60. Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231–238Google Scholar
  61. Siddiqui I, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71(9):5646–5649PubMedPubMedCentralGoogle Scholar
  62. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650Google Scholar
  63. Singh S, Singh B, Singh AP (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci 29:215–216Google Scholar
  64. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, SingaporeGoogle Scholar
  65. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, WallingfordGoogle Scholar
  66. Su HN, Xu YY, Wang X, Zhang KQ, Li GH (2016) Induction of trap formation in nematode-trapping fungi by bacteria-released ammonia. Lett Appl Microbiol 62(4):349–353PubMedGoogle Scholar
  67. Tian BY, Li N, Lian LH, Liu JW, Yang JK, Zhang KQ (2006) Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbial 186:297–305Google Scholar
  68. Tian BY, Yang JK, Lian LH, Wang CY, Li N, Zhang KQ (2007) Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Appl Microbiol Biotechnol 74:372–380PubMedGoogle Scholar
  69. van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedGoogle Scholar
  70. Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281Google Scholar
  71. Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK, Tian MQ, Xu YY, Ma YC, Yu ZF, Huang XW, Liu SQ, Niu XM, Yang JK, Huang Y, Zhang KQ (2014) Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 16(5):5776.  https://doi.org/10.1038/ncomms6776 Google Scholar
  72. Wharton D (1980) Nematode egg shells. Parasitology 81(2):447–463PubMedGoogle Scholar
  73. Woo Jin J, Jung SJ, Park RD et al (2002) Effect of chitinase produced form Paenibacillus illinoisensis on egg hatching of root-knot nematode, Meloidogyne spp. J Microbiol Biotechnol 12:865–871Google Scholar
  74. Xu YY, Lu H, Wang X, Zhang KQ, Li GH (2015) Effect of volatile organic compounds from bacteria on nematodes. Chem Biodivers 12:1415–1421PubMedGoogle Scholar
  75. Yang LL, Huang Y, Liu J, Ma L, Mo MH, Li WJ, Yang FX (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek 102(1):53–59PubMedGoogle Scholar
  76. Yang J, Liang L, Li J, Zhang KQ (2013) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081–7095PubMedGoogle Scholar
  77. Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY (2012) Effects on of chitinase, glucanase and a secondary metabolite from GY525. Nematology 14:175–184Google Scholar
  78. Zasada I, Halbrendt J, Kokalis-Burelle N, LaMondia J, McKenry M, Noling J (2010) Managing nematodes without methyl bromide. Annu Rev Phytopathol 48(1):311–328PubMedGoogle Scholar
  79. Zheng Z, Zheng J, Zhang Z, Peng D, Sun M (2016) Nematicidal spore-forming bacilli share similar virulence factors and mechanisms. Sci Rep 6:31341.  https://doi.org/10.1038/srep31341 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Belowground Ecosystems Group, Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations