Advertisement

Bioactive Secondary Metabolites of Basidiomycetes and Its Potential for Agricultural Plant Growth Promotion

  • Irina Sidorova
  • Elena Voronina
Chapter

Abstract

Basidiomycetes produce a wide range of structurally diverse bioactive compounds. Their medicinal application is well-acknowledged, but basidial fungi are generally underestimated and disregarded in the agriculture, despite numerous basidiomycete-derived antifungals and nematicides detected within the most basidial fungi taxa. Bioactive antifungal metabolites – both high (peptides) and low (terpenoids, steroids, organic acids, etc.) molecular weight compounds – produced by basidial fungi have a potential for further application following to high effective strobilurins heading the world fungicide market. Partially the neglect of basidiomycetes is predetermined by more simplicity for other producers’ groups to maintain in culture and to apply at a large scale. The chapter presents an overview of various chemical classes of basidial fungi secondary metabolites with the focus on active against plant pathogenic fungi and nematodes, addressing chemical structure, biosynthesis pathways, history of discovery, and aspects of action. Screening approaches and prospects and limitations in plant growth promotion for sustainable agriculture for the basidiomycete-derived bioactive compounds are discussed.

Keywords

Basidiomycetes Secondary metabolites Strobilurins Biological control 

Notes

Acknowledgments

Financial support by the Russian Science Foundation (RSCF) to Elena Voronina (program 14-50-00029) is gratefully acknowledged.

References

  1. Anke T (1989) Basidiomycetes: a source for new bioactive secondary metabolites. In: Bushell ME, Gräfe H (eds) Bioactive metabolites from microorganisms. Progress in industrial microbiology, vol 27. Elsevier, Amsterdam, pp 51–66Google Scholar
  2. Anke T (1995) The antifungal strobilurins and their possible ecological role. Can J Bot 73:S940–S945CrossRefGoogle Scholar
  3. Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins – new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot 30:806–810CrossRefGoogle Scholar
  4. Anke T, Hecht HJ, Schramm G, Steglich W (1979) Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J Antibiot 32:1112–1117CrossRefGoogle Scholar
  5. Anke T, Kupka J, Schramm G, Steglich W (1980) Antibiotics from basidiomycetes. X. Scorodonin, a new antibacterial and antifungal metabolite from Marasmius scorodonius (Fr.) Fr. J Antibiot 33:463–467CrossRefGoogle Scholar
  6. Anke T, Giannetti B-M, Steglich W (1982) Antibiotika aus Basidiomyceten, XV [1]. l-Hydroxy-2-nonin-4-on, ein antifungischer und cytotoxischer Metabolit aus Ischnoderma benzoinum (Wahl.) Karst. Z Naturforsch C 37:1–4CrossRefGoogle Scholar
  7. Anke T, Werle A, Bross M, Steglic W (1990) Antibiotics from basidiomycetes. XXXIII. Oudemansin X, a new antifungal E-beta-methoxyacrylate from Oudemansiella radicata (Relhan ex Fr.) Sing. J Antibiot 43:1010–1011CrossRefGoogle Scholar
  8. Anke T, Werle A, Zapf S, Velten R, Steglich W (1995) Favolon, a new antifungal triterpenoid from a Favolaschia species. J Antibiot 48:725–726CrossRefGoogle Scholar
  9. Anke T, Rabe U, Schu P, Eizenhofer T, Schrage M, Steglich W (2002) Studies on the biosynthesis of striatal-type diterpenoids and the biological activity of herical. Z Naturforsch C 57:263–274CrossRefGoogle Scholar
  10. Anke T, Werle A, Kappe RB, Sterner O (2004) Laschiatrion, a new antifungal agent from a Favolaschia species (Basidiomycetes) active against human pathogens. J Antibiot 57:496–501CrossRefGoogle Scholar
  11. Aqueveque P, Anke T, Anke H, Sterner O, Becerra J, Silva M (2005) Favolon B, a new triterpenoid isolated from the chilean Mycena sp. strain 96180. J Antibiot 58:61–64.  https://doi.org/10.1038/ja.2005.7 CrossRefPubMedGoogle Scholar
  12. Aqueveque P, Anke T, Saéz K, Silva M, Becerra J (2010) Antimicrobial activity of submerged cultures of Chilean basidiomycetes. Planta Med 76:1787–1791.  https://doi.org/10.1055/s-0030-1249853 CrossRefPubMedGoogle Scholar
  13. Askary TH, Martinelli PRP (eds) (2015) Biocontrol agents of phytonematodes. CABI, WallingfordGoogle Scholar
  14. Avanzo P, Sabotič J, Anžlovar S, Popovič T, Leonardi A, Pain RH, Kos J, Brzin J (2009) Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiology 155:3971–3981.  https://doi.org/10.1099/mic.0.032805-0 CrossRefPubMedGoogle Scholar
  15. Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ, Willis CL, O’Dwyer K, Spence DW, Foster GD (2016) Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passecerianus for increased rapid antibiotic production. Sci Rep 6:25202.  https://doi.org/10.1038/srep25202 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health B 42:441–451.  https://doi.org/10.1080/03601230701316465 CrossRefPubMedGoogle Scholar
  17. Barneche S, Jorcin G, Cecchetto G, Cerdeiras MP, Vázquez A, Alborés S (2016) Screening for antimicrobial activity of wood rotting higher basidiomycetes mushrooms from Uruguay against phytopathogens. J Med Mushrooms 18(3):261–267.  https://doi.org/10.1615/IntJMedMushrooms.v18.i3.90 CrossRefGoogle Scholar
  18. Bérdy J (2005) Bioactive microbial metabolites. A personal view. J Antibiot 58:1–26.  https://doi.org/10.1038/ja.2005.1 CrossRefPubMedGoogle Scholar
  19. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395.  https://doi.org/10.1038/ja.2012.27 CrossRefPubMedGoogle Scholar
  20. Bohnert M, Nutzmann HW, Schroeckh V, Horn F, Dahse HM, Brakhage AA, Hoffmeister D (2014) Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure-activity relationships. Phytochemistry 105:101–108.  https://doi.org/10.1016/j.phytochem.2014.05.009 CrossRefPubMedGoogle Scholar
  21. Chakravarty P, Hwang SF (1991) Effect of an ectomycorrhizal fungus, Laccaria laccata, on fusarium damping-off in Pinus banksiana seedlings. Eur J For Path 21:97–106.  https://doi.org/10.1111/j.1439-0329.1991.tb00949.x CrossRefGoogle Scholar
  22. Chen HP, Liu JK (2017) Secondary metabolites from higher fungi. In: Kinghorn A, Falk H, Gibbons S, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 106. Springer, Cham, pp 1–201.  https://doi.org/10.1007/978-3-319-59542-9_1 CrossRefGoogle Scholar
  23. Chepkirui C, Richter C, Matasyoh JC, Stadler M (2016) Monochlorinated calocerins A-D and 9-oxostrobilurin derivatives from the basidiomycete Favolaschia calocera. Phytochemistry 132:95–101.  https://doi.org/10.1016/j.phytochem.2016.10.001 CrossRefPubMedGoogle Scholar
  24. Chu K, Xia L, Ng T (2005) Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26:2098–2103.  https://doi.org/10.1016/j.peptides.2005.04.010 CrossRefPubMedGoogle Scholar
  25. Clough JM (1993) The strobilurins, oudemansins, and myxothiazols, fungicidal derivatives of β-methoxyacrylic acid. Nat Prod Rep 10:565–574CrossRefGoogle Scholar
  26. Clough JM (2000) The strobilurin fungicides – from mushroom to molecule to market. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for the pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 277–282Google Scholar
  27. Curl EA, Truelove B (1986) The rhizosphere. Advanced series in agricultural sciences, vol 15. Springer, Berlin/HeidelbergGoogle Scholar
  28. Daum RS, Kar S, Kirkpatrick P (2007) Fresh from the pipeline: retapamulin. Nat Rev Drug Discov 6:865–866.  https://doi.org/10.1038/nrd2442 CrossRefGoogle Scholar
  29. De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40.  https://doi.org/10.1007/s13225-013-0265-2 CrossRefGoogle Scholar
  30. Degenkolb T, Vilcinskas A (2016a) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 100:3799–3812.  https://doi.org/10.1007/s00253-015-7233-6 CrossRefPubMedGoogle Scholar
  31. Degenkolb T, Vilcinskas A (2016b) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl Microbiol Biotechnol 100:3813–3824.  https://doi.org/10.1007/s00253-015-7234-5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Duchesne LC, Peterson RL, Ellis BE (1988) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66:558–562CrossRefGoogle Scholar
  33. Duchesne LC, Ellis BE, Peterson RL (1989) Disease suppression by the ectomycorrhizal fungus Paxillus involutus: contribution of oxalic acid. Can J Bot 67:2726–2730CrossRefGoogle Scholar
  34. Eilbert F, Engler-Lohr M, Anke H, Sterner O (2000) Bioactive sesquiterpenes from the basidiomycete Resupinatus leightonii. J Nat Prod 63:1286–1287CrossRefGoogle Scholar
  35. Engler M, Anke T, Sterner O (1998a) Production of antibiotics by Collybia nivalis, Omphalotus olearius, a Favolaschia and a Pterula species on natural substrates. Z Naturforsch C 53:318–324CrossRefGoogle Scholar
  36. Engler M, Anke T, Sterner O (1998b) Tintinnadiol, a sphaeroane diterpene from fruiting bodies of Mycena tintinnabulum. Phytochemistry 49:2591–2593CrossRefGoogle Scholar
  37. Erkel G, Anke T, Velten R, Gimenez A, Steglich W (1994) Hyphodontal, a new antifungal inhibitor of reverse transcriptases from Hyphodontia sp. (Corticiaceae, Basidiomycetes). Z Naturforsch C 49:561–570PubMedGoogle Scholar
  38. Finking R, Marachiel MF (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488.  https://doi.org/10.1146/annurev.micro.58.030603.123615 CrossRefPubMedGoogle Scholar
  39. Florey HW, Chain E, Heatley NG, Jennings MA, Sanders AG, Abraham EP, Florey ME (1949) Antibiotics. A survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants, vol I. Oxford University Press, OxfordGoogle Scholar
  40. Gargano ML, van Griensven LJLD, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst 151:548–565.  https://doi.org/10.1080/11263504.2017.1301590 CrossRefGoogle Scholar
  41. Gilardoni G, Clericuzio M, Tosi S, Zanoni G, Vidari G (2007) Antifungal acylcyclopentenediones from fruiting bodies of Hygrophorus chrysodon. J Nat Prod 70:137–139.  https://doi.org/10.1021/np060512c CrossRefPubMedGoogle Scholar
  42. Hanson JR (2008) The chemistry of fungi. RSC Publishing, CambridgeGoogle Scholar
  43. Hartley AJ, de Mattos-Shipley K, Collins CM, Kilaru S, Foster GD, Bailey AM (2009) Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiol Lett 297:24–30.  https://doi.org/10.1111/j.1574-6968.2009.01656.x CrossRefPubMedGoogle Scholar
  44. Hautzel R, Anke H, Sheldrick WS (1990) Mycenon, a new metabolite from a Mycena species TA 87202 (basidiomycetes) as an inhibitor of isocitrate lyase. J Antibiot 43:1240–1244CrossRefGoogle Scholar
  45. Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy L, Nilsson RH, Weiss M, Thorn RG (2014) Agaricomycetes. In: McLaughlin DJ, Spatafora JW (eds) The mycota, Part A. Systematics and evolution, vol VII, 2nd edn. Springer, Berlin/Heidelberg, pp 373–429.  https://doi.org/10.1007/978-3-642-55318-9_14 CrossRefGoogle Scholar
  46. Hirota M, Shimizu Y, Kamo T, Makabe H, Shibata H (2003) New plant growth promoters, repraesentins a, B and C, from Lactarius repraesentaneus. Biosci Biotechnol Biochem 67:1597–1600.  https://doi.org/10.1271/bbb.67.1597 CrossRefPubMedGoogle Scholar
  47. Ishikawa NK, Fukushi Y, Yamaji K, Tahara S, Takahashi K (2001) Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes. J Nat Prod 64:932–934CrossRefGoogle Scholar
  48. Kavanagh F, Hervey A, Robbins WJ (1951) Antibiotic substances from basidiomycetes. VIII. Pleurotus mutilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci U S A 37:570–574CrossRefGoogle Scholar
  49. Keswani C (2015) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Idea.  https://doi.org/10.5281/zenodo.15571
  50. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unravelling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544CrossRefGoogle Scholar
  51. Kettering M, Valdivia C, Sterner O, Anke H, Thines E (2005) Heptemerones A-G, seven novel diterpenoids from Coprinus heptemerus: producing organism, fermentation, isolation and biological activities. J Antibiot 58:390–396.  https://doi.org/10.1038/ja.2005.49 CrossRefPubMedGoogle Scholar
  52. Knauseder F, Brandl E (1976) Pleuromutilins. Fermentation, structure and biosynthesis. J Antibiot 29:125–131CrossRefGoogle Scholar
  53. Kokubun T, Scott-Brown A, Kite GC, Simmonds MSJ (2016) Protoilludane, illudane, illudalane, and norilludane sesquiterpenoids from Granulobasidium vellereum. J Nat Prod 79:1698–1701.  https://doi.org/10.1021/acs.jnatprod.6b00325 CrossRefPubMedGoogle Scholar
  54. Kope HH, Tsantrizos YS, Fortin JA, Ogilvie KK (1991) P-Hydroxybenzoylformic acid and (R)-(−)-phydroxymandelic acid, two antifungal compounds isolated from the liquid culture of the ectomycorrhizal fungus Pisolithus arhizus. Can J Microbiol 37:258–264CrossRefGoogle Scholar
  55. Lauer U, Anke T, Sheldrick WS, Scherer A, Steglich W (1989) Antibiotics from basidiomycetes. XXXI. Aleurodiscal: an antifungal sesterterpenoid from Aleurodiscus mirabilis (Berk. & Curt.) Hohn. J Antibiot 42:875–882CrossRefGoogle Scholar
  56. Li G-H, Zhang K-Q (2014) Nematode-toxic fungi and their nematicidal metabolites. In: Zhang K-Q, Hyde KD (eds) Nematode-trapping fungi, Fungal diversity research series, vol 23. Springer, Dordrecht, pp 313–375.  https://doi.org/10.1007/978-94-017-8730-7_7 CrossRefGoogle Scholar
  57. Liermann JC, Kolshorn H, Antelo L, Hof C, Anke H, Opatz T (2009) Omphalotins E-I, five oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem 2009:1256–1262.  https://doi.org/10.1002/ejoc.200801068 CrossRefGoogle Scholar
  58. Liermann JC, Thines E, Opatz T, Anke H (2012) Drimane sesquiterpenoids from Marasmius sp. inhibiting the conidial germination of plant-pathogenic fungi. J Nat Prod 75:1983–1986.  https://doi.org/10.1021/np300337w CrossRefPubMedGoogle Scholar
  59. Liu JK (2002) Biological active substances from mushrooms in Yunnan, China. Heterocycles 57:157–167.  https://doi.org/10.3987/REV-01-543 CrossRefGoogle Scholar
  60. Loiseleur O (2017) Natural products in the discovery of agrochemicals. Chimia 71:810–822.  https://doi.org/10.2533/chimia.2017.810 CrossRefPubMedGoogle Scholar
  61. Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364Google Scholar
  62. Lǖbken T, Schmidt J, Porzel A, Arnold N, Wessjohann L (2004) Hygrophorones A–G: fungicidal cyclopentenones from Hygrophorus species (Basidiomycetes). Phytochemistry 65:1061–1071.  https://doi.org/10.1016/j.phytochem.2004.01.023 CrossRefPubMedGoogle Scholar
  63. Luo DQ, Shao HJ, Zhu HJ, Liu JK (2005a) Activity in vitro and in vivo against plant pathogenic fungi of grifolin isolated from the basidiomycete Albatrellus dispansus. Z Naturforsch C 60:50–56CrossRefGoogle Scholar
  64. Luo DQ, Wang F, Bian XY, Liu JK (2005b) Rufuslactone, a new antifungal sesquiterpene from the fruiting bodies of the basidiomycete Lactarius rufus. J Antibiot 58:456–459.  https://doi.org/10.1038/ja.2005.60 CrossRefPubMedGoogle Scholar
  65. Ma B-J, Wu T-T, Ruan Y, Shen J-W, Zhou H, Yu H-Y, Zhao X (2010) Antibacterial and antifungal activity of scabronine G and H in vitro. Mycology 1:200–203.  https://doi.org/10.1080/21501203.2010.508053 CrossRefGoogle Scholar
  66. Machón P, Pajares JA, Diez JJ, Alves-Santos FM (2009) Influence of the ectomycorrhizal fungus Laccaria laccata on pre-emergence, post-emergence and late damping-off by Fusarium oxysporum and F. verticillioides on stone pine seedlings. Symbiosis 49:101–109.  https://doi.org/10.1007/s13199-009-0015-0 CrossRefGoogle Scholar
  67. Mayer A, Anke H, Sterner O (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius I. Fermentation and biological activity. Nat Prod Lett 10(1):25–32CrossRefGoogle Scholar
  68. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis– applied facets. Springer, New Delhi, pp 111–125Google Scholar
  69. Novak R, Shlaes M (2010) The pleuromutilin antibiotics: a new class for human use. Curr Opin Investig Drugs 11:182–191PubMedGoogle Scholar
  70. Opatz T, Kolshorn H, Anke H (2008) Sterelactones: new isolactarane type sesquiterpenoids with antifungal activity from Stereum sp. IBWF 01060. J Antibiot 61:563–1567.  https://doi.org/10.1038/ja.2008.75 CrossRefPubMedGoogle Scholar
  71. Otto A, Porzel A, Schmidt J, Wessjohann L, Arnold N (2014) Penarines A-F, (nor-) sesquiterpene carboxylic acids from Hygrophorus penarius (Basidiomycetes). Phytochemistry 108:229–1233.  https://doi.org/10.1016/j.phytochem.2014.09.005 CrossRefPubMedGoogle Scholar
  72. Poulsen SM, Karlsson M, Johansson LB, Vester B (2001) The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase Centre on the ribosome. Mol Microbiol 41:1091–1099CrossRefGoogle Scholar
  73. Ranadive KR, Belsare MH, Deokule SS, Jagtap NV, Jadhav HK, Vaidya JG (2013) Glimpses of antimicrobial activity of fungi from world. J New Biol Rep 2(2):142–162Google Scholar
  74. Sabotič J, Popovič T, Puizdar V, Brzin J (2009) Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS J 276:4334–4345.  https://doi.org/10.1111/j.1742-4658.2009.07138.x CrossRefPubMedGoogle Scholar
  75. Sabotič J, Ohm RA, Künzler M (2016) Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 100:91–111.  https://doi.org/10.1007/s00253-015-7075-2 CrossRefPubMedGoogle Scholar
  76. Schmidt-Dannert C (2014) Biosynthesis of terpenoid natural products in fungi. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids, Advances in biochemical engineering/biotechnology, vol 148. Springer, Cham, pp 19–61.  https://doi.org/10.1007/10_2014_283 CrossRefGoogle Scholar
  77. Schüffler A, Anke T (2009) Secondary metabolites of basidiomycetes. In: Anke T, Weber D (eds) Physiology and genetics XV: selected basic and applied aspects. Springer, Berlin, pp 209–231CrossRefGoogle Scholar
  78. Schǖffler A, Anke T (2014) Fungal natural products in research and development. Nat Prod Rep 31:1425–1448.  https://doi.org/10.1039/c4np00060a CrossRefGoogle Scholar
  79. Schüffler A, Wollinsky B, Anke T, Liermann JC, Opatz T (2012) Isolactarane and sterpurane sesquiterpenoids from the basidiomycete Phlebia uda. J Nat Prod 75:1405–1408.  https://doi.org/10.1021/np3000552 CrossRefPubMedGoogle Scholar
  80. Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, SingaporeGoogle Scholar
  81. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR research. CABI, WallingfordGoogle Scholar
  82. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  83. Spiteller P (2008) Chemical defence strategies of higher fungi. Chem Eur J 14:9100–9110.  https://doi.org/10.1002/chem.200800292 CrossRefPubMedGoogle Scholar
  84. Stadler M, Anke H, Sterner O (1994a) Six new antimicrobial and nematicidal bisabolanes from the basidiomycete Cheimonophyllum candidissimum. Tetrahedron 50:12649–12654CrossRefGoogle Scholar
  85. Stadler M, Mayer A, Anke H, Sterner O (1994b) Fatty acids and other compounds with nematicidal activity from cultures of basidiomycetes. Planta Med 60:128–132CrossRefGoogle Scholar
  86. Tang YZ, Liu YH, Chen JX (2012) Pleuromutilin and its derivatives-the lead compounds for novel antibiotics. Mini-Rev Med Chem 12:53–61CrossRefGoogle Scholar
  87. Thines E, Anke H, Weber RWS (2004) Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycol Res 108:14–25CrossRefGoogle Scholar
  88. Thongbai B, Surup F, Mohr K, Kuhnert E, Hyde KD, Stadler M (2013) Gymnopalynes A and B, chloropropynyl-isocoumarin antibiotics from cultures of the basidiomycete Gymnopus sp. J Nat Prod 76:2141–2144.  https://doi.org/10.1021/np400609f CrossRefPubMedGoogle Scholar
  89. Tsantrizos YS, Kope HH, Fortin JA, Ogilvie KK (1991) Antifungal antibiotics from Pisolithus tinctorius. Phytochemistry 30:1113–1118CrossRefGoogle Scholar
  90. Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic, New YorkGoogle Scholar
  91. Varma A, Prasad R, Tuteja N (eds) (2017) Mycorrhiza – function, diversity, state of the art, 4th edn. Springer, Cham.  https://doi.org/10.1007/978-3-319-53064-2 CrossRefGoogle Scholar
  92. Von Jagow G, Gribble GW, Trumpower BL (1986) Mucidin and strobilurin a are identical and inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain at the same site as myxothiazol. Biochemistry 25:775–780CrossRefGoogle Scholar
  93. Wang H, Ng T (2004a) Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25:1–5.  https://doi.org/10.1016/j.peptides.2003.11.014 CrossRefPubMedGoogle Scholar
  94. Wang H, Ng TB (2004b) Alveolarin, a novel antifungal polypeptide from the wild mushroom, Polyporus alveolaris. Peptides 25:693–696.  https://doi.org/10.1016/j.peptides.2004.01.026 CrossRefPubMedGoogle Scholar
  95. Wang H, Ng T (2006) Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27:27–30.  https://doi.org/10.1016/j.peptides.2005.06.009 CrossRefPubMedGoogle Scholar
  96. Wangun HVK, Dorfelt H, Hertweck C (2006) Nebularic acids and nebularilactones, novel drimane sesquiterpenoids from the fungus Lepista nebularis. Eur J Org Chem (7):1643–1646.  https://doi.org/10.1002/ejoc.200500869 CrossRefGoogle Scholar
  97. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227.  https://doi.org/10.1139/B04-082 CrossRefGoogle Scholar
  98. Yamane M, Minami A, Liu C, Ozaki T, Takeuchi I, Tsukagoshi T, Tokiwano T, Gomi K, Oikawa H (2017) Biosynthetic machinery of diterpene pleuromutilin isolated from basidiomycete fungi. Chembiochem 18:2317–2322.  https://doi.org/10.1002/cbic.201700434 CrossRefPubMedGoogle Scholar
  99. Yang LP, Kean SJ (2008) Retapamulin: a review of its use in the management of impetigo and other uncomplicated superficial skin infection. Drugs 68:855–873CrossRefGoogle Scholar
  100. Zakharychev VV, Kovalenko LV (1998) Natural compounds of the strobilurin series and their synthetic analogues as cell respiration inhibitors. Russ Chem Rev 67:535–544CrossRefGoogle Scholar
  101. Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, Jia J, Tan Y, Cui C, Lin J, Tan C, Jiang Y, Chen Y (2011) Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci U S A 108:12943–12948.  https://doi.org/10.1073/pnas.1107336108 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod 67:300–310.  https://doi.org/10.1021/np030372w CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Irina Sidorova
    • 1
  • Elena Voronina
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations