Glycan-related Materials and their use for Biomaterials

  • Hiroyuki YanoEmail author
  • Shinsuke IfukuEmail author
  • Jun-ichi KadokawaEmail author
  • Akira HaradaEmail author
  • Shin-ichiro ShodaEmail author
  • Kazunari AkiyoshiEmail author
  • Yoshiko MiuraEmail author
  • Yoshio Okamoto
  • Masayuki HaraEmail author


Cellulose, Nanofibers, Bio-based materials, Sustainable resources, Carbon-neutral


References Section for 20.1

  1. 1.
    Eichhorn SJ et al (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  2. 2.
    Nakagaito AN et al (2010) Displays from transparent films of natural nanofibers. MRS Bull 35:214–218CrossRefGoogle Scholar
  3. 3.
    Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  4. 4.
    Lindströma T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials andcomposites based on nanocellulosics. Scandinavian J Forest Res 29:345–351CrossRefGoogle Scholar

References Section for 20.2

  1. 5.
    Ifuku S, Saimoto H (2012) Chitin Nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318CrossRefGoogle Scholar
  2. 6.
    Azuma K et al (2014) Preparation and biomedical applications of chitin and chitosan nanofibers. J Biomed Nanotechnol 10:2891–2920CrossRefGoogle Scholar
  3. 7.
    Ifuku S (2014) Chitin and chitosan nanofibers: preparations and chemical modifications. Molecules 19:18367–18380CrossRefGoogle Scholar

References Section for 20.3

  1. 8.
    Egashira N et al (2017) Enzymatic grafting of amylose on chitin nanofibers for hierarchically construction of controlled microstructures. Polym Chem 8:3279–3285CrossRefGoogle Scholar
  2. 9.
    Nishimura T, Akiyoshi K (2016) Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1423Google Scholar
  3. 10.
    Shoda S et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413CrossRefGoogle Scholar
  4. 11.
    Kadokawa J et al (2015) Preparation of multiformable supramolecular gels through helical complexation by amylose in vine-twining polymerization. Polym Chem 6:6402–6408CrossRefGoogle Scholar
  5. 12.
    Nishimura T et al (2015) Glyco star polymers as helical multivalent host and biofunctional nano-platform. ACS Macro Lett 4:367–371CrossRefGoogle Scholar

References Section for 20.4

  1. 13.
    Harada AE (2012) Supramolecular polymer chemistry. Wiley VCH, WeinheimGoogle Scholar
  2. 14.
    Iwaso K et al (2016) Fast responsive dry-type artificial molecular muscles with {c2}daisy chains. Nat Chem 8:625–632CrossRefGoogle Scholar
  3. 15.
    Okumra Y et al (1998) Inclusion-dissociation transition in the complex formation between molecular nanotubes and linear polymer chains in solutions. Phys Rev Lett 80:5003–5006Google Scholar
  4. 16.
    Harada A et al (1992) Molecular necklace: rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327CrossRefGoogle Scholar
  5. 17.
    Nakahata M et al (2011) Redox-responsive self-healing materials formed from host-guest polymers. Nat Commun 2:511Google Scholar

References Section for 20.5

  1. 18.
    Coelho MAA, Ribeiro BD (2016) White biotechnology for sustainable chemistry. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 19.
    Taniguchi N et al (2008) Experimental glycoscience. Springer, TokyoGoogle Scholar
  3. 20.
    Shoda S et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413CrossRefGoogle Scholar
  4. 21.
    Shoda S et al (2003) Green process in Glycotechnology. Bull Chem Soc Jpn 76:1–13CrossRefGoogle Scholar
  5. 22.
    Fraser-Reid B et al (2001) Glycoscience II, chemistry and chemical biology. Springer, BerlinGoogle Scholar

References Section for 20.6

  1. 23.
    Sasaki Y, Akiyoshi K (2010) Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10:366–376PubMedGoogle Scholar
  2. 24.
    Tahara Y, Akiyoshi K (2015) Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev 95:65–76CrossRefGoogle Scholar
  3. 25.
    Tahara Y et al (2015) Nanocarrier-integrated microspheres: nanogel tectonic engineering for advanced drug delivery systems. Adv Mater 27:5080–5088CrossRefGoogle Scholar
  4. 26.
    Hashimoto Y et al (2018) Nanogel tectonics for tissue engineering: protein delivery systems with nanogel chaperones. Adv Healthcare Mater 23:1800729CrossRefGoogle Scholar
  5. 27.
    Kawasaki R et al (2016) Magnetically guided protein transduction by hybrid of nanogel chaperone with iron oxide nanoparticles. Angew Chem Int Ed 55:11377–11381CrossRefGoogle Scholar

References Section for 20.7

  1. 28.
    Miura Y et al (2016) Glycopolymer Nanobiotechnology. Chem Rev 116:1673–1692CrossRefGoogle Scholar
  2. 29.
    Zhang Q et al (2013) Sequence-controlled multi-block Glycopolymers to inhibit DC-SIGN-gp120 binding. Angew Chem 125:4531–4535CrossRefGoogle Scholar
  3. 30.
    Paszek MJ et al (2014) The Cancer Glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325CrossRefGoogle Scholar
  4. 31.
    Oh YI et al (2013) Tailored Glycopolymers as anticoagulant heparin Mimetics. Angew Chem 125:12012–12015CrossRefGoogle Scholar
  5. 32.
    Kiessling LL, Grim JC (2013) Glycopolymer probes of signal transduction. Chem Soc Rev 42:4476–4491CrossRefGoogle Scholar

References Section for 20.8

  1. 33.
    Subramanian G (ed) (2007) Chiral separation techniques: a practical approach, 3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  2. 34.
    Carreira E, Yamamoto H (eds) (2012) Comprehensive chirality, vol. 8, separations and analysis. Elsevier, AmsterdamGoogle Scholar
  3. 35.
    Okamoto Y, Yashima E (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed 37:1020–1043CrossRefGoogle Scholar
  4. 36.
    Ikai T, Okamoto Y (2009) Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev 109:6077–6101CrossRefGoogle Scholar
  5. 37.
    Shen J, Okamoto Y (2016) Efficient separation of enantiomers using Stereoregular chiral polymers. Chem Rev 116:1094–1138CrossRefGoogle Scholar

References Section for 20.9

  1. 38.
    Anitha A et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  2. 39.
    Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309CrossRefGoogle Scholar
  3. 40.
    Kim H et al (2017) Hyaluronate and its derivatives for customized biomedical applications. Biomaterials 123:155–171CrossRefGoogle Scholar
  4. 41.
    Okolicsanyi RK et al (2014) Mesenchymal stem cells, neural lineage potential, heparin sulfate proteoglycans and the matrix. Dev Biol 388:1–10CrossRefGoogle Scholar
  5. 42.
    Furukawa J et al (2016) Glyconomics of human embryonic stem cells and human induced pluripotent stem cells. Glycoconj J 33:707–715CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Tottori UniversityTottoriJapan
  3. 3.Kagoshima UniversityKagoshimaJapan
  4. 4.Osaka UniversitySuitaJapan
  5. 5.Tohoku UniversitySendaiJapan
  6. 6.Kyushu UniversityFukuokaJapan
  7. 7.Nagoya UniversityNagoyaJapan
  8. 8.Harbin Engineering UniversityHarbinChina
  9. 9.Osaka Prefecture UniversitySakaiJapan

Personalised recommendations