Advertisement

Applications of Semiconducting Metal Oxides Gas Sensors

  • Yonghui Deng
Chapter

Abstract

Since the discovery of gas sensing properties of metal oxides in the 1960s, semiconducting metal oxides (SMO)-based gas sensors have attracted great attention for its advantages such as  fast and sensitive detection portability and low cost, compared to other conventional techniques. This chapter extensively reviews the recent development of the SMO gas sensors for volatile organic compounds (VOCs) gases including ethanol, acetone, formaldehyde and BTX (benzene, toluene, xylene); environmental gases including CO2, O2, SO2, O3 and NH3; highly toxic gases including CO, H2S and NO2; and combustible gases including CH4, H2 and liquefied petroleum gas (LPG). The gas sensing properties of different metal oxides with diverse structures toward specific target gases have been individually discussed. Promising metal oxide materials for sensitive and selective detection of each gas have been identified. Moreover, design strategies, sensing mechanisms and related applications of SMO materials are also discussed in detail. This chapter gives classification of metal oxides sensors by analyte gas, providing a guideline for targeted design of SMO sensors.

Keywords

Metal oxides gas sensors VOCs sensors Environmental gases sensors Toxic gases sensors 

References

  1. 1.
    Chen YJ, Xue XY, Wang YG, Wang TH (2005) Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl Phys Lett 87(23):233503.  https://doi.org/10.1063/1.2140091CrossRefGoogle Scholar
  2. 2.
    Liu Y, Koep E, Liu M (2005) A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem Mater 17(15):3997–4000.  https://doi.org/10.1021/cm050451oCrossRefGoogle Scholar
  3. 3.
    Li K, Li Y, Lu M, Kuo C, Chen L (2009) Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties. Adv Funct Mater 19(15):2453–2456.  https://doi.org/10.1002/adfm.200801774CrossRefGoogle Scholar
  4. 4.
    Liu S, Xie M, Li Y, Guo X, Ji W, Ding W, Au C (2010) Novel sea urchin-like hollow core–shell SnO2 superstructures: facile synthesis and excellent ethanol sensing performance. Sens Actuators B Chem 151(1):229–235.  https://doi.org/10.1016/j.snb.2010.09.015CrossRefGoogle Scholar
  5. 5.
    Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuators B Chem 162(1):237–243.  https://doi.org/10.1016/j.snb.2011.12.073CrossRefGoogle Scholar
  6. 6.
    Tian S, Yang F, Zeng D, Xie C (2012) Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J Phys Chem C 116(19):10586–10591.  https://doi.org/10.1021/jp2123778CrossRefGoogle Scholar
  7. 7.
    Meng F, Ge S, Jia Y, Sun B, Sun Y, Wang C, Wu H, Jin Z, Li M (2015) Interlaced nanoflake-assembled flower-like hierarchical ZnO microspheres prepared by bisolvents and their sensing properties to ethanol. J Alloy Compd 632:645–650.  https://doi.org/10.1016/j.jallcom.2015.01.289CrossRefGoogle Scholar
  8. 8.
    Zhou X, Zhu Y, Luo W, Ren Y, Xu P, Elzatahry AA, Cheng X, Alghamdi A, Deng Y, Zhao D (2016) Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. J Mater Chem A 4(39):15064–15071.  https://doi.org/10.1039/C6TA05687CCrossRefGoogle Scholar
  9. 9.
    Xiangfeng C, Caihong W, Dongli J, Chenmou Z (2004) Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem Phys Lett 399(4–6):461–464.  https://doi.org/10.1016/j.cplett.2004.10.053CrossRefGoogle Scholar
  10. 10.
    Liu J, Wang X, Peng Q, Li Y (2006) Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sens Actuators B Chem 115(1):481–487.  https://doi.org/10.1016/j.snb.2005.10.012CrossRefGoogle Scholar
  11. 11.
    Pandeeswari R, Karn RK, Jeyaprakash BG (2014) Ethanol sensing behaviour of sol–gel dip-coated TiO2 thin films. Sens Actuators B Chem 194:470–477.  https://doi.org/10.1016/j.snb.2013.12.122CrossRefGoogle Scholar
  12. 12.
    Yang C, Su X, Xiao F, Jian J, Wang J (2011) Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens Actuators B Chem 158(1):299–303.  https://doi.org/10.1016/j.snb.2011.06.024CrossRefGoogle Scholar
  13. 13.
    Zoolfakar AS, Ahmad MZ, Rani RA, Ou JZ, Balendhran S, Zhuiykov S, Latham K, Wlodarski W, Kalantar-zadeh K (2013) Nanostructured copper oxides as ethanol vapour sensors. Sens Actuators B Chem 185:620–627.  https://doi.org/10.1016/j.snb.2013.05.042CrossRefGoogle Scholar
  14. 14.
    Cho NG, Hwang I, Kim H, Lee J, Kim I (2011) Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens Actuators B Chem 155(1):366–371.  https://doi.org/10.1016/j.snb.2010.12.031CrossRefGoogle Scholar
  15. 15.
    Hwang I, Choi J, Woo H, Kim S, Jung S, Seong T, Kim I, Lee J (2011) Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl Mater Inter 3(8):3140–3145.  https://doi.org/10.1021/am200647fCrossRefGoogle Scholar
  16. 16.
    Lin Y, Hsueh Y, Lee P, Wang C, Wu JM, Perng T, Shih HC (2011) Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J Mater Chem 21(28):10552.  https://doi.org/10.1039/c1jm10785bCrossRefGoogle Scholar
  17. 17.
    Van Hieu N, Duc NAP, Trung T, Tuan MA, Chien ND (2010) Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: a competitive sensor for ethanol and liquid petroleum gas. Sens Actuators B Chem 144(2):450–456.  https://doi.org/10.1016/j.snb.2009.03.043CrossRefGoogle Scholar
  18. 18.
    Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens Actuators B Chem 187:313–318.  https://doi.org/10.1016/j.snb.2012.11.079CrossRefGoogle Scholar
  19. 19.
    Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B Chem 176:323–329.  https://doi.org/10.1016/j.snb.2012.09.027 CrossRefGoogle Scholar
  20. 20.
    Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5(13):9884–9989.  https://doi.org/10.1039/c4ra14879gCrossRefGoogle Scholar
  21. 21.
    Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun 47(1):565–567.  https://doi.org/10.1039/C0CC02398ACrossRefGoogle Scholar
  22. 22.
    Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi S, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core-shell nanocomposites. Nanomaterials-Basel 5(2):737–749.  https://doi.org/10.3390/nano5020737CrossRefGoogle Scholar
  23. 23.
    Hu P, Du G, Zhou W, Cui J, Lin J, Liu H, Liu D, Wang J, Chen S (2010) Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl Mater Inter 2(11):3263–3269.  https://doi.org/10.1021/am100707hCrossRefGoogle Scholar
  24. 24.
    Kim S, Hwang I, Na CW, Kim I, Kang YC, Lee J (2011) Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. J Mater Chem 21(46):18560–18567.  https://doi.org/10.1039/c1jm14252fCrossRefGoogle Scholar
  25. 25.
    Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841.  https://doi.org/10.1039/b504094aCrossRefGoogle Scholar
  26. 26.
    Li LM, Li CC, Zhang J, Du ZF, Zou BS, Yu HC, Wang YG, Wang TH (2007) Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires. Nanotechnology 18(22):225504.  https://doi.org/10.1088/0957-4484/18/22/225504CrossRefGoogle Scholar
  27. 27.
    Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969–1976.  https://doi.org/10.1002/adfm.200700784CrossRefGoogle Scholar
  28. 28.
    Van Hieu N, Kim H, Ju B, Lee J (2008) Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens Actuators B Chem 133(1):228–234.  https://doi.org/10.1016/j.snb.2008.02.018CrossRefGoogle Scholar
  29. 29.
    Zhu CL, Chen YJ, Wang RX, Wang LJ, Cao MS, Shi XL (2009) Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens Actuators B Chem 140(1):185–189.  https://doi.org/10.1016/j.snb.2009.04.011CrossRefGoogle Scholar
  30. 30.
    Yin M, Liu M, Liu S (2013) Development of an alcohol sensor based on ZnO nanorods synthesized using a scalable solvothermal method. Sens Actuators B Chem 185:735–742.  https://doi.org/10.1016/j.snb.2013.05.055CrossRefGoogle Scholar
  31. 31.
    Bie L, Yan X, Yin J, Duan Y, Yuan Z (2007) Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens Actuators B Chem 126(2):604–608.  https://doi.org/10.1016/j.snb.2007.04.011CrossRefGoogle Scholar
  32. 32.
    Rao J, Yu A, Shao C, Zhou X (2012) Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Appl Mater Inter 4(10):5346–5352.  https://doi.org/10.1021/am3012966CrossRefGoogle Scholar
  33. 33.
    Chen Y, Zhu CL, Xiao G (2006) Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 17(18):4537–4541.  https://doi.org/10.1088/0957-4484/17/18/002CrossRefGoogle Scholar
  34. 34.
    Xu J, Chen Y, Shen J (2008) Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater Lett 62(8–9):1363–1365.  https://doi.org/10.1016/j.matlet.2007.08.054CrossRefGoogle Scholar
  35. 35.
    Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, Poli N, Sberveglieri G (2007) In2O3 nanowires for gas sensors: morphology and sensing characterisation. Thin Solid Films 515(23):8356–8359.  https://doi.org/10.1016/j.tsf.2007.03.034CrossRefGoogle Scholar
  36. 36.
    Nguyen H, El-Safty SA (2011) Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C 115(17):8466–8474.  https://doi.org/10.1021/jp1116189CrossRefGoogle Scholar
  37. 37.
    Chen D, Hou X, Li T, Yin L, Fan B, Wang H, Li X, Xu H, Lu H, Zhang R, Sun J (2011) Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens Actuators B Chem 153(2):373–381.  https://doi.org/10.1016/j.snb.2010.11.001CrossRefGoogle Scholar
  38. 38.
    Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens Actuators B Chem 230:697–705.  https://doi.org/10.1016/j.snb.2016.02.100CrossRefGoogle Scholar
  39. 39.
    Shin J, Choi S, Lee I, Youn D, Park CO, Lee J, Tuller HL, Kim I (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23(19):2357–2367.  https://doi.org/10.1002/adfm.201202729CrossRefGoogle Scholar
  40. 40.
    Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B Chem 209:180–185.  https://doi.org/10.1016/j.snb.2014.11.106CrossRefGoogle Scholar
  41. 41.
    Righettoni M, Tricoli A, Pratsinis SE (2010) Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581–3587.  https://doi.org/10.1021/ac902695nCrossRefGoogle Scholar
  42. 42.
    Bai X, Ji H, Gao P, Zhang Y, Sun X (2014) Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens Actuators B Chem 193:100–106.  https://doi.org/10.1016/j.snb.2013.11.059CrossRefGoogle Scholar
  43. 43.
    Hernández PT, Naik AJT, Newton EJ, Hailes SMV, Parkin IP (2014) Assessing the potential of metal oxide semiconducting gas sensors for illicit drug detection markers. J Mater Chem A 2(23):8952–8960.  https://doi.org/10.1039/C4TA00357HCrossRefGoogle Scholar
  44. 44.
    Kaneti YV, Moriceau J, Liu M, Yuan Y, Zakaria Q, Jiang X, Yu A (2015) Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance. Sens Actuators B Chem 209:889–897.  https://doi.org/10.1016/j.snb.2014.12.065CrossRefGoogle Scholar
  45. 45.
    Biswal RC (2011) Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B Chem 157(1):183–188.  https://doi.org/10.1016/j.snb.2011.03.047CrossRefGoogle Scholar
  46. 46.
    Shan H, Liu C, Liu L, Li S, Wang L, Zhang X, Bo X, Chi X (2013) Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens Actuators B Chem 184:243–247.  https://doi.org/10.1016/j.snb.2013.04.088CrossRefGoogle Scholar
  47. 47.
    Zeng Y, Zhang T, Yuan M, Kang M, Lu G, Wang R, Fan H, He Y, Yang H (2009) Growth and selective acetone detection based on ZnO nanorod arrays. Sens Actuators B Chem 143(1):93–98.  https://doi.org/10.1016/j.snb.2009.08.053CrossRefGoogle Scholar
  48. 48.
    Li X, Chang Y, Long Y (2012) Influence of Sn doping on ZnO sensing properties for ethanol and acetone. Mater Sci Eng C 32(4):817–821.  https://doi.org/10.1016/j.msec.2012.01.032CrossRefGoogle Scholar
  49. 49.
    Li Z, Zhao Q, Fan W, Zhan J (2011) Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale 3(4):1646–1652.  https://doi.org/10.1039/c0nr00728eCrossRefGoogle Scholar
  50. 50.
    Tian S, Ding X, Zeng D, Wu J, Zhang S, Xie C (2013) A low temperature gas sensor based on Pd-functionalized mesoporous SnO2 fibers for detecting trace formaldehyde. RSC Adv 3(29):11823.  https://doi.org/10.1039/c3ra40567bCrossRefGoogle Scholar
  51. 51.
    Lee Y, Lee K, Lee D, Jeong Y, Lee HS, Choa Y (2009) Preparation and gas sensitivity of SnO2 nanopowder homogenously doped with Pt nanoparticles. Curr Appl Phys 9(1):S79–S81.  https://doi.org/10.1016/j.cap.2008.08.024CrossRefGoogle Scholar
  52. 52.
    Zheng Y, Wang J, Yao P (2011) Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens Actuators B Chem 156(2):723–730.  https://doi.org/10.1016/j.snb.2011.02.026CrossRefGoogle Scholar
  53. 53.
    Han N, Wu X, Zhang D, Shen G, Liu H, Chen Y (2011) CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens Actuators B Chem 152(2):324–329.  https://doi.org/10.1016/j.snb.2010.12.029CrossRefGoogle Scholar
  54. 54.
    Peng L, Zhai J, Wang D, Zhang Y, Wang P, Zhao Q, Xie T (2010) Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sens Actuators B Chem 148(1):66–73.  https://doi.org/10.1016/j.snb.2010.04.045CrossRefGoogle Scholar
  55. 55.
    Castro-Hurtado I, Herrán J, Ga Mandayo G, Castaño E (2012) SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection. Thin Solid Films 520(14):4792–4796.  https://doi.org/10.1016/j.tsf.2011.10.140CrossRefGoogle Scholar
  56. 56.
    Chung F, Wu R, Cheng F (2014) Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 190:1–7.  https://doi.org/10.1016/j.snb.2013.08.037CrossRefGoogle Scholar
  57. 57.
    Wang J, Zhang P, Qi J, Yao P (2009) Silicon-based micro-gas sensors for detecting formaldehyde. Sens Actuators B Chem 136(2):399–404.  https://doi.org/10.1016/j.snb.2008.12.056CrossRefGoogle Scholar
  58. 58.
    Lv P, Tang ZA, Yu J, Zhang FT, Wei GF, Huang ZX, Hu Y (2008) Study on a micro-gas sensor with SnO2–NiO sensitive film for indoor formaldehyde detection. Sens Actuators B Chem 132(1):74–80.  https://doi.org/10.1016/j.snb.2008.01.018CrossRefGoogle Scholar
  59. 59.
    Du H, Wang J, Su M, Yao P, Zheng Y, Yu N (2012) Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sens Actuators B Chem 166–167:746–752.  https://doi.org/10.1016/j.snb.2012.03.055CrossRefGoogle Scholar
  60. 60.
    Sun P, Zhou X, Wang C, Shimanoe K, Lu G, Yamazoe N (2014) Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors. J Mater Chem A 2(5):1302–1308.  https://doi.org/10.1039/C3TA13707DCrossRefGoogle Scholar
  61. 61.
    Chu X, Chen T, Zhang W, Zheng B, Shui H (2009) Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens Actuators B Chem 142(1):49–54.  https://doi.org/10.1016/j.snb.2009.07.049CrossRefGoogle Scholar
  62. 62.
    Xie C, Xiao L, Hu M, Bai Z, Xia X, Zeng D (2010) Fabrication and formaldehyde gas-sensing property of ZnO–MnO2 coplanar gas sensor arrays. Sens Actuators B Chem 145(1):457–463.  https://doi.org/10.1016/j.snb.2009.12.052CrossRefGoogle Scholar
  63. 63.
    Han N, Tian Y, Wu X, Chen Y (2009) Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens Actuators B Chem 138(1):228–235.  https://doi.org/10.1016/j.snb.2009.01.054CrossRefGoogle Scholar
  64. 64.
    Chung F, Zhu Z, Luo P, Wu R, Li W (2014) Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 199:314–319.  https://doi.org/10.1016/j.snb.2014.04.004CrossRefGoogle Scholar
  65. 65.
    Lee C, Chiang C, Wang Y, Ma R (2007) A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sens Actuators B Chem 122(2):503–510.  https://doi.org/10.1016/j.snb.2006.06.018CrossRefGoogle Scholar
  66. 66.
    Castro-Hurtado I, Herrán J, Mandayo GG, Castaño E (2011) Studies of influence of structural properties and thickness of NiO thin films on formaldehyde detection. Thin Solid Films 520(3):947–952.  https://doi.org/10.1016/j.tsf.2011.04.180CrossRefGoogle Scholar
  67. 67.
    Castro-Hurtado I, Malagù C, Morandi S, Pérez N, Mandayo GG, Castaño E (2013) Properties of NiO sputtered thin films and modeling of their sensing mechanism under formaldehyde atmospheres. Acta Mater 61(4):1146–1153.  https://doi.org/10.1016/j.actamat.2012.10.024CrossRefGoogle Scholar
  68. 68.
    Liu Y, Zhu G, Ge B, Zhou H, Yuan A, Shen X (2012) Concave Co3O4 octahedral mesocrystal: polymer-mediated synthesis and sensing properties. CrystEngComm 14(19):6264–6627.  https://doi.org/10.1039/c2ce25788bCrossRefGoogle Scholar
  69. 69.
    Yang W, Wan P, Zhou X, Hu J, Guan Y, Feng L (2014) Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde. Sens Actuators B Chem 201:228–233.  https://doi.org/10.1016/j.snb.2014.05.003CrossRefGoogle Scholar
  70. 70.
    Zhu BL, Xie CS, Wang WY, Huang KJ, Hu JH (2004) Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater Lett 58(5):624–629.  https://doi.org/10.1016/S0167-577X(03)00582-2CrossRefGoogle Scholar
  71. 71.
    Elmi I, Zampolli S, Cozzani E, Mancarella F, Cardinali GC (2008) Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens Actuators B Chem 135(1):342–351.  https://doi.org/10.1016/j.snb.2008.09.002CrossRefGoogle Scholar
  72. 72.
    Wang L, Zhang R, Zhou T, Lou Z, Deng J, Zhang T (2016) Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sens Actuators B Chem 223:311–317.  https://doi.org/10.1016/j.snb.2015.09.114CrossRefGoogle Scholar
  73. 73.
    Vaishnav VS, Patel SG, Panchal JN (2015) Development of ITO thin film sensor for detection of benzene. Sens Actuators B Chem 206:381–388.  https://doi.org/10.1016/j.snb.2014.07.037CrossRefGoogle Scholar
  74. 74.
    Liu S, Wang Z, Zhao H, Fei T, Zhang T (2014) Ordered mesoporous Co3O4 for high-performance toluene sensing. Sens Actuators B Chem 197:342–349.  https://doi.org/10.1016/j.snb.2014.03.007CrossRefGoogle Scholar
  75. 75.
    Wang C, Cheng X, Zhou X, Sun P, Hu X, Shimanoe K, Lu G, Yamazoe N (2014) Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl Mater Inter 6(15):12031–12037.  https://doi.org/10.1021/am501063zCrossRefGoogle Scholar
  76. 76.
    Kim H, Yoon J, Choi K, Jang HW, Umar A, Lee J (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15):7066.  https://doi.org/10.1039/c3nr01281fCrossRefGoogle Scholar
  77. 77.
    Hong YJ, Yoon J, Lee J, Kang YC (2014) One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem Eur J 20(10):2737–2741.  https://doi.org/10.1002/chem.201304502CrossRefGoogle Scholar
  78. 78.
    Ke M, Lee M, Lee C, Fu L (2009) A MEMS-based benzene gas sensor with a self-heating WO3 sensing layer. Sensors-Basel 9(4):2895–2906.  https://doi.org/10.3390/s90402895CrossRefGoogle Scholar
  79. 79.
    Park J, Shen X, Wang G (2009) Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens Actuators B Chem 136(2):494–498.  https://doi.org/10.1016/j.snb.2008.11.041CrossRefGoogle Scholar
  80. 80.
    Bai Z, Xie C, Zhang S, Zhang L, Zhang Q, Xu W, Xu J (2010) Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method. Sens Actuators B Chem 151(1):107–113.  https://doi.org/10.1016/j.snb.2010.09.039CrossRefGoogle Scholar
  81. 81.
    Wang L, Lou Z, Fei T, Zhang T (2011) Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications. J Mater Chem 21(48):19331–19336.  https://doi.org/10.1039/c1jm13354cCrossRefGoogle Scholar
  82. 82.
    Qu F, Wang Y, Liu J, Wen S, Chen Y, Ruan S (2014) Fe3O4–NiO core–shell composites: hydrothermal synthesis and toluene sensing properties. Mater Lett 132:167–170.  https://doi.org/10.1016/j.matlet.2014.06.060CrossRefGoogle Scholar
  83. 83.
    Shan H, Liu C, Liu L, Zhang J, Li H, Liu Z, Zhang X, Bo X, Chi X (2013) Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes. ACS Appl Mater Inter 5(13):6376–6380.  https://doi.org/10.1021/am4015082CrossRefGoogle Scholar
  84. 84.
    Cao J, Wang Z, Wang R, Zhang T (2014) Electrostatic sprayed Cr-loaded NiO core-in-hollow-shell structured micro/nanospheres with ultra-selectivity and sensitivity for xylene. CrystEngComm 16(33):7731.  https://doi.org/10.1039/C4CE00969JCrossRefGoogle Scholar
  85. 85.
    Akiyama T, Ishikawa Y, Hara K (2013) Xylene sensor using double-layered thin film and Ni-deposited porous alumina. Sens Actuators B Chem 181:348–352.  https://doi.org/10.1016/j.snb.2013.01.024CrossRefGoogle Scholar
  86. 86.
    Sun C, Su X, Xiao F, Niu C, Wang J (2011) Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties. Sens Actuators B Chem 157(2):681–685.  https://doi.org/10.1016/j.snb.2011.05.039CrossRefGoogle Scholar
  87. 87.
    Michel CR, López-Contreras NL, Martínez-Preciado AH (2013) Gas sensing properties of Gd2O3 microspheres prepared in aqueous media containing pectin. Sens Actuators B Chem 177:390–396.  https://doi.org/10.1016/j.snb.2012.11.018CrossRefGoogle Scholar
  88. 88.
    Michel CR, Martínez-Preciado AH, Contreras NLL (2013) Gas sensing properties of Nd2O3 nanostructured microspheres. Sens Actuators B Chem 184:8–14.  https://doi.org/10.1016/j.snb.2013.04.044CrossRefGoogle Scholar
  89. 89.
    Jinesh KB, Dam VAT, Swerts J, de Nooijer C, van Elshocht S, Brongersma SH, Crego-Calama M (2011) Room-temperature CO2 sensing using metal–insulator–semiconductor capacitors comprising atomic-layer-deposited La2O3 thin films. Sens Actuators B Chem 156(1):276–282.  https://doi.org/10.1016/j.snb.2011.04.033CrossRefGoogle Scholar
  90. 90.
    Trung DD, Toan LD, Hong HS, Lam TD, Trung T, Van Hieu N (2012) Selective detection of carbon dioxide using LaOCl-functionalized SnO2 nanowires for air-quality monitoring. Talanta 88:152–159.  https://doi.org/10.1016/j.talanta.2011.10.024CrossRefGoogle Scholar
  91. 91.
    Herrán J, Mandayo G, Pérez N, Castaño E, Prim A, Pellicer E, Andreu T, Peiró F, Cornet A, Morante JR (2008) On the structural characterization of BaTiO3–CuO as CO2 sensing material. Sens Actuators B Chem 133(1):315–320.  https://doi.org/10.1016/j.snb.2008.02.052CrossRefGoogle Scholar
  92. 92.
    Herrán J, Ga Mandayo G, Castaño E (2009) Semiconducting BaTiO3–CuO mixed oxide thin films for CO2 detection. Thin Solid Films 517(22):6192–6197.  https://doi.org/10.1016/j.tsf.2009.04.007CrossRefGoogle Scholar
  93. 93.
    Izu N, Oh-hori N, Itou M, Shin W, Matsubara I, Murayama N (2005) Resistive oxygen gas sensors based on Ce1−xZrxO2 nano powder prepared using new precipitation method. Sens Actuators B Chem 108(1–2):238–243.  https://doi.org/10.1016/j.snb.2004.11.064CrossRefGoogle Scholar
  94. 94.
    Castañeda L (2007) Effects of palladium coatings on oxygen sensors of titanium dioxide thin films. Mater Sci Eng B 139(2–3):149–154.  https://doi.org/10.1016/j.mseb.2007.01.046CrossRefGoogle Scholar
  95. 95.
    Sotter E, Vilanova X, Llobet E, Vasiliev A, Correig X (2007) Thick film titania sensors for detecting traces of oxygen. Sens Actuators B Chem 127(2):567–579.  https://doi.org/10.1016/j.snb.2007.05.010CrossRefGoogle Scholar
  96. 96.
    Al-Hardan N, Abdullah MJ, Abdul Aziz A, Ahmad H (2010) Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films. Appl Surf Sci 256(11):3468–3471.  https://doi.org/10.1016/j.apsusc.2009.12.055CrossRefGoogle Scholar
  97. 97.
    Kaneko H, Okamura T, Taimatsu H, Matsuki Y, Nishida H (2005) Performance of a miniature zirconia oxygen sensor with a Pd–PdO internal reference. Sens Actuators B Chem 108(1–2):331–334.  https://doi.org/10.1016/j.snb.2004.12.110CrossRefGoogle Scholar
  98. 98.
    Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sens Actuators B Chem 108(1–2):244–249.  https://doi.org/10.1016/j.snb.2004.10.053CrossRefGoogle Scholar
  99. 99.
    Minaee H, Mousavi SH, Haratizadeh H, de Oliveira PW (2013) Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: the effect of morphology and temperature. Thin Solid Films 545:8–12.  https://doi.org/10.1016/j.tsf.2013.05.155CrossRefGoogle Scholar
  100. 100.
    Ahmed F, Arshi N, Anwar MS, Danish R, Koo BH (2013) Mn-doped ZnO nanorod gas sensor for oxygen detection. Curr Appl Phys 13:S64–S68.  https://doi.org/10.1016/j.cap.2012.12.029CrossRefGoogle Scholar
  101. 101.
    Shimizu Y, Matsunaga N, Hyodo T, Egashira M (2001) Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens Actuators B Chem 77(1–2):35–40.  https://doi.org/10.1016/S0925-4005(01)00669-4CrossRefGoogle Scholar
  102. 102.
    Hidalgo P, Castro RHR, Coelho ACV, Gouvêa D (2005) Surface segregation and consequent SO2 sensor response in SnO2–NiO. Chem Mater 17(16):4149–4153.  https://doi.org/10.1021/cm049020gCrossRefGoogle Scholar
  103. 103.
    Liang X, Zhong T, Quan B, Wang B, Guan H (2008) Solid-state potentiometric SO2 sensor combining NASICON with V2O5-doped TiO2 electrode. Sens Actuators B Chem 134(1):25–30.  https://doi.org/10.1016/j.snb.2008.04.003CrossRefGoogle Scholar
  104. 104.
    Das S, Chakraborty S, Parkash O, Kumar D, Bandyopadhyay S, Samudrala SK, Sen A, Maiti HS (2008) Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 75(2):385–389.  https://doi.org/10.1016/j.talanta.2007.11.010CrossRefGoogle Scholar
  105. 105.
    Stankova M, Vilanova X, Calderer J, Llobet E, Ivanov P, Gràcia I, Cané C, Correig X (2004) Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors. Sens Actuators B Chem 102(2):219–225.  https://doi.org/10.1016/j.snb.2004.04.030CrossRefGoogle Scholar
  106. 106.
    Bendahan M, Boulmani R, Seguin J, Aguir K (2004) Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O concentration in the sputtering gas, and working temperature. Sens Actuators B Chem 100(3):320–324.  https://doi.org/10.1016/j.snb.2004.01.023CrossRefGoogle Scholar
  107. 107.
    Korotcenkov G, Blinov I, Ivanov M, Stetter JR (2007) Ozone sensors on the base of SnO2 films deposited by spray pyrolysis. Sens Actuators B Chem 120(2):679–686.  https://doi.org/10.1016/j.snb.2006.03.029CrossRefGoogle Scholar
  108. 108.
    Da Silva LF, Catto AC, Avansi W, Cavalcante LS, Andrés J, Aguir K, Mastelaro VR, Longo E (2014) A novel ozone gas sensor based on one-dimensional (1D) α-Ag2WO4 nanostructures. Nanoscale 6(8):4058–4062.  https://doi.org/10.1039/C3NR05837ACrossRefGoogle Scholar
  109. 109.
    Deng Z, Fang X, Li D, Zhou S, Tao R, Dong W, Wang T, Meng G, Zhu X (2009) Room temperature ozone sensing properties of p-type transparent oxide CuCrO2. J Alloy Compd 484(1–2):619–621.  https://doi.org/10.1016/j.jallcom.2009.05.001CrossRefGoogle Scholar
  110. 110.
    Vallejos S, Khatko V, Aguir K, Ngo KA, Calderer J, Gràcia I, Cané C, Llobet E, Correig X (2007) Ozone monitoring by micro-machined sensors with WO3 sensing films. Sens Actuators B Chem 126(2):573–578.  https://doi.org/10.1016/j.snb.2007.04.012CrossRefGoogle Scholar
  111. 111.
    Minh VA, Tuan LA, Huy TQ, Hung VN, Quy NV (2013) Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl Surf Sci 265:458–464.  https://doi.org/10.1016/j.apsusc.2012.11.028CrossRefGoogle Scholar
  112. 112.
    Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D (2006) A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens Actuators B Chem 114(2):910–915.  https://doi.org/10.1016/j.snb.2005.08.010CrossRefGoogle Scholar
  113. 113.
    Hieu NV, Quang VV, Hoa ND, Kim D (2011) Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Curr Appl Phys 11(3):657–661.  https://doi.org/10.1016/j.cap.2010.11.002CrossRefGoogle Scholar
  114. 114.
    Van Hieu N, Thuy LTB, Chien ND (2008) Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens Actuators B Chem 129(2):888–895.  https://doi.org/10.1016/j.snb.2007.09.088CrossRefGoogle Scholar
  115. 115.
    Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19(12):1641–1645.  https://doi.org/10.1002/adma.200602128CrossRefGoogle Scholar
  116. 116.
    Zhang J, Wang S, Wang Y, Xu M, Xia H, Zhang S, Huang W, Guo X, Wu S (2009) ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens Actuators B Chem 139(2):411–417.  https://doi.org/10.1016/j.snb.2009.03.014CrossRefGoogle Scholar
  117. 117.
    Wang Y, Liu J, Cui X, Gao Y, Ma J, Sun Y, Sun P, Liu F, Liang X, Zhang T, Lu G (2017) NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens Actuators B Chem 238:473–481.  https://doi.org/10.1016/j.snb.2016.07.085CrossRefGoogle Scholar
  118. 118.
    Mashock M, Yu K, Cui S, Mao S, Lu G, Chen J (2012) Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS Appl Mater Inter 4(8):4192–4199.  https://doi.org/10.1021/am300911zCrossRefGoogle Scholar
  119. 119.
    Tai H, Jiang Y, Xie G, Yu J, Chen X, Ying Z (2008) Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens Actuators B Chem 129(1):319–326.  https://doi.org/10.1016/j.snb.2007.08.013CrossRefGoogle Scholar
  120. 120.
    Wang K, Zhao T, Lian G, Yu Q, Luan C, Wang Q, Cui D (2013) Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens Actuators B Chem 184:33–39.  https://doi.org/10.1016/j.snb.2013.04.054CrossRefGoogle Scholar
  121. 121.
    Wang C, Chen M (2010) Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors. Sens Actuators B Chem 150(1):360–366.  https://doi.org/10.1016/j.snb.2010.06.060CrossRefGoogle Scholar
  122. 122.
    Wu R, Wu J, Yu M, Tsai T, Yeh C (2008) Promotive effect of CNT on Co3O4–SnO2 in a semiconductor-type CO sensor working at room temperature. Sens Actuators B Chem 131(1):306–312.  https://doi.org/10.1016/j.snb.2007.11.033CrossRefGoogle Scholar
  123. 123.
    Khoang ND, Hong HS, Trung DD, Duy NV, Hoa ND, Thinh DD, Hieu NV (2013) On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sens Actuators B Chem 181:529–536.  https://doi.org/10.1016/j.snb.2013.02.047CrossRefGoogle Scholar
  124. 124.
    Al-Kuhaili MF, Durrani SMA, Bakhtiari IA (2008) Carbon monoxide gas-sensing properties of CeO2–ZnO thin films. Appl Surf Sci 255(5):3033–3039.  https://doi.org/10.1016/j.apsusc.2008.08.058CrossRefGoogle Scholar
  125. 125.
    Yu M, Wu R, Chavali M (2011) Effect of ‘Pt’ loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens Actuators B Chem 153(2):321–328.  https://doi.org/10.1016/j.snb.2010.09.071CrossRefGoogle Scholar
  126. 126.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268.  https://doi.org/10.1002/adfm.201705268CrossRefGoogle Scholar
  127. 127.
    Wagner T, Waitz T, Roggenbuck J, Fröba M, Kohl CD, Tiemann M (2007) Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515(23):8360–8363.  https://doi.org/10.1016/j.tsf.2007.03.021CrossRefGoogle Scholar
  128. 128.
    Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ x-ray photoelectron spectroscopy. J Phys Chem C 115(43):21258–21263.  https://doi.org/10.1021/jp2068733CrossRefGoogle Scholar
  129. 129.
    Patil D, Patil P, Subramanian V, Joy PA, Potdar HS (2010) Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81(1–2):37–43.  https://doi.org/10.1016/j.talanta.2009.11.034CrossRefGoogle Scholar
  130. 130.
    Ramgir NS, Ganapathi SK, Kaur M, Datta N, Muthe KP, Aswal DK, Gupta SK, Yakhmi JV (2010) Sub-ppm H2S sensing at room temperature using CuO thin films. Sens Actuators B Chem 151(1):90–96.  https://doi.org/10.1016/j.snb.2010.09.043CrossRefGoogle Scholar
  131. 131.
    Zhang F, Zhu A, Luo Y, Tian Y, Yang J, Qin Y (2010) CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J Phys Chem C 114(45):19214–19219.  https://doi.org/10.1021/jp106098zCrossRefGoogle Scholar
  132. 132.
    Li X, Wang Y, Lei Y, Gu Z (2012) Highly sensitive H2S sensor based on template-synthesized CuO nanowires. RSC Adv 2(6):2302.  https://doi.org/10.1039/c2ra00718eCrossRefGoogle Scholar
  133. 133.
    Kim H, Jin C, Park S, Kim S, Lee C (2012) H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens Actuators B Chem 161(1):594–599.  https://doi.org/10.1016/j.snb.2011.11.006CrossRefGoogle Scholar
  134. 134.
    Xue X, Xing L, Chen Y, Shi S, Wang Y, Wang T (2008) Synthesis and H2S sensing properties of CuO–SnO2 core/shell PN-junction nanorods. J Phys Chem C 112(32):12157–12160.  https://doi.org/10.1021/jp8037818CrossRefGoogle Scholar
  135. 135.
    Li Y, Luo W, Qin N, Dong J, Wei J, Li W, Feng S, Chen J, Xu J, Elzatahry AA, Es-Saheb MH, Deng Y, Zhao D (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew Chem Int Ed 53(34):9035–9040.  https://doi.org/10.1002/anie.201403817CrossRefGoogle Scholar
  136. 136.
    Xiao X, Liu L, Ma J, Ren Y, Cheng X, Zhu Y, Zhao D, Elzatahry AA, Alghamdi A, Deng Y (2018) Ordered mesoporous tin oxide semiconductors with large pores and crystallized walls for high-performance gas sensing. ACS Appl Mater Inter 10(2):1871–1880.  https://doi.org/10.1021/acsami.7b18830CrossRefGoogle Scholar
  137. 137.
    Qin Y, Zhang F, Chen Y, Zhou Y, Li J, Zhu A, Luo Y, Tian Y, Yang J (2012) Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J Phys Chem C 116(22):11994–12000.  https://doi.org/10.1021/jp212029nCrossRefGoogle Scholar
  138. 138.
    Chen J, Wang K, Hartman L, Zhou W (2008) H2S detection by vertically aligned CuO nanowire array sensors. J Phys Chem C 112(41):16017–16021.  https://doi.org/10.1021/jp805919tCrossRefGoogle Scholar
  139. 139.
    Zeng Y, Zhang K, Wang X, Sui Y, Zou B, Zheng W, Zou G (2011) Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages. Sens Actuators B Chem 159(1):245–250.  https://doi.org/10.1016/j.snb.2011.06.080CrossRefGoogle Scholar
  140. 140.
    Xu J, Wang X, Shen J (2006) Hydrothermal synthesis of In2O3 for detecting H2S in air. Sens Actuators B Chem 115(2):642–646.  https://doi.org/10.1016/j.snb.2005.10.038CrossRefGoogle Scholar
  141. 141.
    Zhang C, Debliquy M, Boudiba A, Liao H, Coddet C (2010) Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens Actuators B Chem 144(1):280–288.  https://doi.org/10.1016/j.snb.2009.11.006CrossRefGoogle Scholar
  142. 142.
    Heidari EK, Zamani C, Marzbanrad E, Raissi B, Nazarpour S (2010) WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sens Actuators B Chem 146(1):165–170.  https://doi.org/10.1016/j.snb.2010.01.073CrossRefGoogle Scholar
  143. 143.
    Liu Z, Miyauchi M, Yamazaki T, Shen Y (2009) Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sens Actuators B Chem 140(2):514–519.  https://doi.org/10.1016/j.snb.2009.04.059CrossRefGoogle Scholar
  144. 144.
    You L, Sun YF, Ma J, Guan Y, Sun JM, Du Y, Lu GY (2011) Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sens Actuators B Chem 157(2):401–407.  https://doi.org/10.1016/j.snb.2011.04.071CrossRefGoogle Scholar
  145. 145.
    Kida T, Nishiyama A, Yuasa M, Shimanoe K, Yamazoe N (2009) Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens Actuators B Chem 135(2):568–574.  https://doi.org/10.1016/j.snb.2008.09.056CrossRefGoogle Scholar
  146. 146.
    Min Y, Tuller HL, Palzer S, Wöllenstein J, Böttner H (2003) Gas response of reactively sputtered ZnO films on Si-based micro-array. Sens Actuators B Chem 93(1–3):435–441.  https://doi.org/10.1016/S0925-4005(03)00170-9CrossRefGoogle Scholar
  147. 147.
    Cho P, Kim K, Lee J (2006) NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J Electroceram 17(2–4):975–978.  https://doi.org/10.1007/s10832-006-8146-7CrossRefGoogle Scholar
  148. 148.
    Na CW, Woo H, Kim I, Lee J (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148–5150.  https://doi.org/10.1039/c0cc05256fCrossRefGoogle Scholar
  149. 149.
    Breedon M, Spizzirri P, Taylor M, du Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W, Kalantar-zadeh K (2010) Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous sol–gel method. Cryst Growth Des 10(1):430–439.  https://doi.org/10.1021/cg9010295CrossRefGoogle Scholar
  150. 150.
    Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B Chem 225:544–552.  https://doi.org/10.1016/j.snb.2015.11.065CrossRefGoogle Scholar
  151. 151.
    Öztürk S, Kılınç N, Öztürk ZZ (2013) Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J Alloy Compd 581:196–201.  https://doi.org/10.1016/j.jallcom.2013.07.063CrossRefGoogle Scholar
  152. 152.
    Moon J, Park J, Lee S, Zyung T, Kim I (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305.  https://doi.org/10.1016/j.snb.2010.06.033CrossRefGoogle Scholar
  153. 153.
    Basu PK, Jana SK, Saha H, Basu S (2008) Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens Actuators B Chem 135(1):81–88.  https://doi.org/10.1016/j.snb.2008.07.021CrossRefGoogle Scholar
  154. 154.
    Bhattacharyya P, Basu PK, Lang C, Saha H, Basu S (2008) Noble metal catalytic contacts to sol–gel nanocrystalline zinc oxide thin films for sensing methane. Sens Actuators B Chem 129(2):551–557.  https://doi.org/10.1016/j.snb.2007.09.001CrossRefGoogle Scholar
  155. 155.
    Kim JC, Jun HK, Huh J, Lee DD (1997) Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens Actuators B 45(3):271–277.  https://doi.org/10.1016/S0925-4005(97)00325-0CrossRefGoogle Scholar
  156. 156.
    Prasad AK, Amirthapandian S, Dhara S, Dash S, Murali N, Tyagi AK (2014) Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature. Sens Actuators B Chem 191:252–256.  https://doi.org/10.1016/j.snb.2013.09.102CrossRefGoogle Scholar
  157. 157.
    Dayan NJ, Sainkar SR, Karekar RN, Aiyer RC (1998) Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 325(1):254–258.  https://doi.org/10.1016/S0040-6090(98)00501-XCrossRefGoogle Scholar
  158. 158.
    Quaranta F, Rella R, Siciliano P, Capone S, Epifani M, Vasanelli L, Licciulli A, Zocco A (1999) A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature. Sens Actuators B 58:350–355CrossRefGoogle Scholar
  159. 159.
    Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W, Wang C (2010) Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J Phys Chem C 114(13):6100–6105.  https://doi.org/10.1021/jp9100202CrossRefGoogle Scholar
  160. 160.
    Liu L, Guo C, Li S, Wang L, Dong Q, Li W (2010) Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens Actuators B Chem 150(2):806–810.  https://doi.org/10.1016/j.snb.2010.07.022CrossRefGoogle Scholar
  161. 161.
    Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Inter 5(6):2013–2021.  https://doi.org/10.1021/am3028553CrossRefGoogle Scholar
  162. 162.
    Das SN, Kar JP, Choi J, Lee TI, Moon K, Myoung J (2010) Fabrication and characterization of ZnO single nanowire-based hydrogen sensor. J Phys Chem C 114(3):1689–1693.  https://doi.org/10.1021/jp910515bCrossRefGoogle Scholar
  163. 163.
    Alsaif MMYA, Balendhran S, Field MR, Latham K, Wlodarski W, Ou JZ, Kalantar-zadeh K (2014) Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing. Sens Actuators B Chem 192:196–204.  https://doi.org/10.1016/j.snb.2013.10.107CrossRefGoogle Scholar
  164. 164.
    Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B Chem 93(1–3):338–344.  https://doi.org/10.1016/S0925-4005(03)00222-3CrossRefGoogle Scholar
  165. 165.
    Liu B, Cai D, Liu Y, Li H, Weng C, Zeng G, Li Q, Wang T (2013) High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5(6):2505.  https://doi.org/10.1039/c3nr33872jCrossRefGoogle Scholar
  166. 166.
    Patil LA, Bari AR, Shinde MD, Deo V (2010) Ultrasonically prepared nanocrystalline ZnO thin films for highly sensitive LPG sensing. Sens Actuators B Chem 149(1):79–86.  https://doi.org/10.1016/j.snb.2010.06.027CrossRefGoogle Scholar
  167. 167.
    Shinde VR, Gujar TP, Lokhande CD (2007) LPG sensing properties of ZnO films prepared by spray pyrolysis method: effect of molarity of precursor solution. Sens Actuators B Chem 120(2):551–559.  https://doi.org/10.1016/j.snb.2006.03.007CrossRefGoogle Scholar
  168. 168.
    Waghulade R, Patil P, Pasricha R (2007) Synthesis and LPG sensing properties of nano-sized cadmium oxide. Talanta 72(2):594–599.  https://doi.org/10.1016/j.talanta.2006.11.024CrossRefGoogle Scholar
  169. 169.
    Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens Actuators B Chem 190:120–126.  https://doi.org/10.1016/j.snb.2013.07.091CrossRefGoogle Scholar
  170. 170.
    Singh S, Singh A, Yadav BC, Dwivedi PK (2013) Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sens Actuators B Chem 177:730–739.  https://doi.org/10.1016/j.snb.2012.11.096CrossRefGoogle Scholar
  171. 171.
    Mishra D, Srivastava A, Srivastava A, Shukla RK (2008) Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties. Appl Surf Sci 255(5):2947–2950.  https://doi.org/10.1016/j.apsusc.2008.08.078CrossRefGoogle Scholar
  172. 172.
    Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139(30):10365–10373.  https://doi.org/10.1021/jacs.7b04221CrossRefGoogle Scholar
  173. 173.
    Zhang R, Wang L, Deng J, Zhou T, Lou Z, Zhang T (2015) Hierarchical structure with heterogeneous phase as high performance sensing materials for trimethylamine gas detecting. Sens Actuators B Chem 220:1224–1231.  https://doi.org/10.1016/j.snb.2015.07.036CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yonghui Deng
    • 1
  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations