Advertisement

Sensing Devices of Semiconducting Metal Oxides Gas Sensors

  • Yonghui Deng
Chapter

Abstract

Semiconducting metal oxide gas sensors are increasingly penetrating mass-market applications, including automotive applications, diagnosis of diseases via breath analysis, home alliances as well as traditional fields such as toxic and explosive gas alarms. A semiconducting gas sensor can be considered as a device into which semiconducting materials are incorporated. A variety of semiconducting gas sensors has been developed with diverse physical structures, different sensing materials and involving various working principles. These sensors may be based on the transduction principle (resistive/conductometric, capacitive, etc.), measure (pressure, temperature, stress, etc.) and materials (semiconductors, piezoelectric ceramic, oxides, etc.). They can also be based on technology (thin-/thick-film MEMS) and applications (aerospace, industry, automobile) or simply based on the properties of the sensor (piezoelectric, magnetic, optical, etc.).

Keywords

Resistor type sensors Sensing materials MEMS platforms Field effect transistor 

References

  1. 1.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106.  https://doi.org/10.3390/s100302088CrossRefGoogle Scholar
  2. 2.
    Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24:18–24.  https://doi.org/10.1557/S0883769400052465CrossRefGoogle Scholar
  3. 3.
    Kentoro I (1979) Hydrogen sensitive Schottky barrier diodes. Surf Sci 86:345–352.  https://doi.org/10.1016/0039-6028(79)90412-6CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Kishimoto K, Nakato Y (1994) Reactions of hydrogen at the interface of palladium-titanium dioxide Schottky diodes as hydrogen sensors, studied by work function and electrical characteristic measurements. Surf Sci 306:393–405.  https://doi.org/10.1016/0039-6028(94)90080-9CrossRefGoogle Scholar
  5. 5.
    Liu Y, Yu J, Lai PT (2014) Investigation of WO3/ZnO thin-film heterojunction-based Schottky diodes for H2 gas sensing. Int J Hydrogen Energy 39(19):10313–10319.  https://doi.org/10.1016/j.ijhydene.2014.04.155CrossRefGoogle Scholar
  6. 6.
    Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B 23:103–109.  https://doi.org/10.1016/0925-4005(94)01278-PCrossRefGoogle Scholar
  7. 7.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50.  https://doi.org/10.1002/smll.200500261CrossRefGoogle Scholar
  8. 8.
    Hyodo T, Shibata H, Shimizu Y, Egashira M (2009) H2 sensing properties of diode-type gas sensors fabricated with Ti- and/or Nb-based materials. Sens Actuators B 142(1):97–104.  https://doi.org/10.1016/j.snb.2009.07.058CrossRefGoogle Scholar
  9. 9.
    Hyodo T, Yamashita T, Shimizu Y (2015) Effects of surface modification of noble-metal sensing electrodes with Au on the hydrogen-sensing properties of diode-type gas sensors employing an anodized titania film. Sens Actuators B 207:105–116.  https://doi.org/10.1016/j.snb.2014.10.005CrossRefGoogle Scholar
  10. 10.
    Daugherty M, Janousek BK (1983) Surface potential relaxation in a biased Hg1−xCdxTe metal-insulator-semiconductor capacitor. Appl Phys Lett 42:290–292.  https://doi.org/10.1063/1.93883CrossRefGoogle Scholar
  11. 11.
    Dhakal R, Kim ES, Jo YH, Kim SS, Kim NY (2017) Characterization of micro-resonator based on enhanced metal insulator semiconductor capacitor for glucose recognition. Med Eng Phys 41:55–62.  https://doi.org/10.1016/j.medengphy.2017.01.008CrossRefGoogle Scholar
  12. 12.
    Lim T, Bong J, Mills EM, Kim S, Ju S (2015) Highly stable operation of metal oxide nanowire transistors in ambient humidity, water, blood, and oxygen. ACS Appl Mater Interfaces 7(30):16296–16302.  https://doi.org/10.1021/acsami.5b03038CrossRefGoogle Scholar
  13. 13.
    Lundström I, Armgarth M, Spetz A, Winquist F (1986) Gas sensors based on catalytic metal-gate field-effect devices. Sens Actuators B 10:399–421.  https://doi.org/10.1016/0250-6874(86)80056-7CrossRefGoogle Scholar
  14. 14.
    Wang C, Xu X, Li B (1983) Ionic and electronic conduction of oxygen ion conductors in the Bi2O3−Y2O3 system. Solid State Ionics 13(2):135–140.  https://doi.org/10.1016/0167-2738(84)90047-xCrossRefGoogle Scholar
  15. 15.
    Näfe H, Aldinger F (2000) CO2 sensor based on a solid state oxygen concentration cell. Sens Actuators B 69(1):46–50.  https://doi.org/10.1016/s0925-4005(00)00333-6CrossRefGoogle Scholar
  16. 16.
    Lupan O, Postica V, Wolff N, Polonskyi O, Duppel V, Kaidas V, Lazari E, Ababii N, Faupel F, Kienle L, Adelung R (2017) Localized synthesis of iron oxide nanowires and fabrication of high performance nanosensors based on a single Fe2O3 nanowire. Small 13(16):1602868.  https://doi.org/10.1002/smll.201602868CrossRefGoogle Scholar
  17. 17.
    Feng P, Shao F, Shi Y, Wan Q (2014) Gas sensors based on semiconducting nanowire field-effect transistors. Sensors 14:17406–17429.  https://doi.org/10.3390/s140917406CrossRefGoogle Scholar
  18. 18.
    Brattein WH, Bardeen J (1953) Surface properties of germanium. Bell Syst Tech J 32:1–41.  https://doi.org/10.1002/j.1538-7305.1953.tb01420.xCrossRefGoogle Scholar
  19. 19.
    Heiland G (1954) Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit von ZnO-Kristallen. Z Phys 138:459–464.  https://doi.org/10.1007/BF01327362CrossRefGoogle Scholar
  20. 20.
    Taguchi N (1971) Gas detecting devices. U.S. Patent 3,631,436, 28 December 1971Google Scholar
  21. 21.
    Yamazoe N, Shimanoe K (2009) New perspectives of gas sensor technology. Sens Actuators B 138:100–107.  https://doi.org/10.1016/j.snb.2009.01.023CrossRefGoogle Scholar
  22. 22.
    Yamazoe N, Shimanoe K (2008) Roles of shape and size of component crystals in semiconductor gas sensor. (1) Response to oxygen. J Electrochem Soc 155(4):J85–J92.  https://doi.org/10.1149/1.2832655CrossRefGoogle Scholar
  23. 23.
    Yamazoe N, Shimanoe K, Sawada C (2007) Contribution of electron tunneling transport in semiconducting gas sensor. Thin Solid Films 515:8302–8309.  https://doi.org/10.1016/j.tsf.2007.03.018CrossRefGoogle Scholar
  24. 24.
    Yamazoe N, Shimanoe K (2008) Theory of power laws for semiconducting gas sensors. Sens Actuators B 128(2008):566–573.  https://doi.org/10.1016/j.snb.2007.07.036CrossRefGoogle Scholar
  25. 25.
    Zhou X, Zhu Y, Luo W, Ren Y, Xu P, Elzatahry AA, Cheng X, Alghamdi A, Deng Y, Zhao D (2016) Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. J Mater Chem A 4(39):15064–15071.  https://doi.org/10.1039/c6ta05687cCrossRefGoogle Scholar
  26. 26.
    Puigcorbe J, Vogel D, Michel B, Vila A, Gracia A, Cane C (2003) Thermal and mechanical analysis of micromachined gas sensors. J Micromech Microeng 13(5):548–556.  https://doi.org/10.1088/0960-1317/13/5/304CrossRefGoogle Scholar
  27. 27.
    Rossi C, Temple-Boyer P, Esteve D (1998) Realization and performance of thin SiO2/SiNx membrane for microheater applications. Sens Actuators A 64:241–245.  https://doi.org/10.1016/s0924-4247(97)01627-0CrossRefGoogle Scholar
  28. 28.
    Rossi C, Scheid E, Esteve D (1997) Theoretical and experimental study of silicon micromachined microheater with dielectric stacked membranes. Sens Actuators A 3:183–189.  https://doi.org/10.1016/S0924-4247(97)80503-1CrossRefGoogle Scholar
  29. 29.
    Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10:1115–1134.  https://doi.org/10.1088/0964-1726/10/6/301CrossRefGoogle Scholar
  30. 30.
    Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuators B 162(1):237–243.  https://doi.org/10.1016/j.snb.2011.12.073CrossRefGoogle Scholar
  31. 31.
    Heidari EK, Zamani C, Marzbanrad E, Raissi B, Nazarpour S (2010) WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sens Actuators B 146:165–170.  https://doi.org/10.1016/j.snb.2010.01.07CrossRefGoogle Scholar
  32. 32.
    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591.  https://doi.org/10.1016/j.snb.2011.08.032CrossRefGoogle Scholar
  33. 33.
    Sun Y, Chen L, Wang Y, Zhao Z, Li P, Zhang W, Leprince-Wang Y, Hu J (2017) Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J Mater Sci 52:1561–1572.  https://doi.org/10.1007/s10853-016-0450-2CrossRefGoogle Scholar
  34. 34.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconducting: gas sensing performance and mechanism study. Adv Funct Mater 170:52–68.  https://doi.org/10.1002/adfm.201705268CrossRefGoogle Scholar
  35. 35.
    Liu X, Chang Z, Luo L, Lei X, Liu J, Sun X (2012) Sea urchin-like Ag-α-Fe2O3 nanocomposite microspheres: synthesis and gas sensing applications. J Mater Chem 22:7232–7238.  https://doi.org/10.1039/c2jm15742jCrossRefGoogle Scholar
  36. 36.
    Gao J, Wang L, Kan K, Xu S, jing L, Liu S, Shen P, Li L, Shi K (2014) One-step synthesis of mesoporous Al2O3–In2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature. J Mater Chem A 2:949–956.  https://doi.org/10.1039/c3ta13943cCrossRefGoogle Scholar
  37. 37.
    Nguyen H, El-Safty SA (2011) Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C 115(17):8466–8474.  https://doi.org/10.1021/jp1116189CrossRefGoogle Scholar
  38. 38.
    Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductings: overview. Sens Actuators B 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005CrossRefGoogle Scholar
  39. 39.
    Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B 176:323–329.  https://doi.org/10.1016/j.snb.2012.09.027CrossRefGoogle Scholar
  40. 40.
    Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Com 47(1):565–567.  https://doi.org/10.1039/C0CC02398ACrossRefGoogle Scholar
  41. 41.
    Sun P, Zhou X, Wang C, Shimanoe K, Lu G, Yamazoe N (2014) Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors. J Mater Chem A 2(5):1302–1308.  https://doi.org/10.1039/C3TA13707DCrossRefGoogle Scholar
  42. 42.
    Hong YJ, Yoon J, Lee J, Kang YC (2014) One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem Eur J 20(10):2737–2741.  https://doi.org/10.1002/chem.201304502CrossRefGoogle Scholar
  43. 43.
    Kaneko H, Okamura T, Taimatsu H, Matsuki Y, Nishida H (2005) Performance of a miniature zirconia oxygen sensor with a Pd–PdO internal reference. Sens Actuators B 108(1–2):331–334.  https://doi.org/10.1016/j.snb.2004.12.110CrossRefGoogle Scholar
  44. 44.
    Park J, Shen X, Wang G (2009) Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens Actuators B 136(2):494–498.  https://doi.org/10.1016/j.snb.2008.11.041CrossRefGoogle Scholar
  45. 45.
    Jinesh KB, Dam VAT, Swerts J, de Nooijer C, van Elshocht S, Brongersma SH, Crego-Calama M (2011) Room-temperature CO2 sensing using metal-insulator-semiconductor capacitors comprising atomic-layer-deposited La2O3 thin films. Sens Actuators B 156(1):276–282.  https://doi.org/10.1016/j.snb.2011.04.033CrossRefGoogle Scholar
  46. 46.
    Herrán J, Ga Mandayo G, Castaño E (2009) Semiconducting BaTiO3–CuO mixed oxide thin films for CO2 detection. Thin Solid Films 517(22):6192–6197.  https://doi.org/10.1016/j.tsf.2009.04.007CrossRefGoogle Scholar
  47. 47.
    Puigcorbe J, Vila A, Cerda J, Cirera A, Gracia I, Cane C, Morante JR (2002) Thermo-mechanical analysis of a microdrop coated gas sensor. Sens Actuators A 97–98:379–385.  https://doi.org/10.1016/S0924-4247(01)00858-5CrossRefGoogle Scholar
  48. 48.
    Gotz A, Gracia I, Cane C, Lora-Tamayo E (1997) Thermal and mechanical aspects for designing micromachined low power gas sensor. J Micromech Microeng 7:247–249.  https://doi.org/10.1088/0960-1317/7/3/045CrossRefGoogle Scholar
  49. 49.
    Cavicchi R, Suehle J, Kreider K, Shomaker B, Small J, Gaitan M (1995) Growth of SnO2 films on micromachined hotplates. Appl Phys Lett 66:812–816.  https://doi.org/10.1063/1.113429CrossRefGoogle Scholar
  50. 50.
    Kato YK, Myers RC, Gossard AC, Awschalom DD (2004) Observation of the spin hall effect in semiconductors. Science 306:1910–1913.  https://doi.org/10.1126/science.1105514CrossRefGoogle Scholar
  51. 51.
    Moldovan C, Nedelcu O, Johander P, Goenaga I, Gomez D, Petkov P, Kaufmann U, Ritzhaupt-Kleissl HJ, Dorey R, Persson K (2007) Ceramic micro heater technology for gas sensors. Rom J Inf Sci Technol 10:43–52.  https://doi.org/10.1109/SMICND.2006.283967CrossRefGoogle Scholar
  52. 52.
    Gardner J, Pike A, de Rooji N, Koudelka-Hep M, Clerc P, Hierlemann A, GoÈpel W (1995) Integrated array sensor for detecting organic solvents. Sens Actuators B 26:135–139.  https://doi.org/10.1016/0925-4005(94)01573-zCrossRefGoogle Scholar
  53. 53.
    Sberveglieri G, Hellmich W, MuÈller G (1997) Silicon hotplates for metal oxide gas sensor elements. Microsyst Technol 3:183–190.  https://doi.org/10.1007/s005420050078CrossRefGoogle Scholar
  54. 54.
    Astie S, Gue AM, Scheid E, Guillemet JP (2000) Design of a low power SnO2 gas sensor integrated on silicon oxynitride membrane. Sens Actuators B 67:84–88.  https://doi.org/10.1016/S0925-4005(00)00403-2CrossRefGoogle Scholar
  55. 55.
    Mele L, Santagata F, Iervolino E, Mihailovic M, Rossi T, Tran AT, Schellevis H, Creemer JF, Sarro PM (2012) A molybdenum MEMS microhotplate for high-temperature operation. Sens Actuators A 188:173–180.  https://doi.org/10.1016/j.sna.2011.11.023CrossRefGoogle Scholar
  56. 56.
    Lee J, King WP (2001) Microcantilever hotplates: design, fabrication, and characterization. Sens Actuators A 136:291–298.  https://doi.org/10.1016/j.sna.2006.10.051CrossRefGoogle Scholar
  57. 57.
    Spannhake J, Helwig A, Muller G, Faglia G, Sberveglieri G, Doll T, Wassner T, Eickhoff M (2007) SnO2: Sb—A new material for high temperature MEMS heater applications: performance and limitations. Sens Actuators B 124:421–428.  https://doi.org/10.1016/j.snb.2007.01.004CrossRefGoogle Scholar
  58. 58.
    Kim H, Sigmund W (2004) ZnO nanocrystals synthesized by physical vapor deposition. Nanotechnology 4:275–278.  https://doi.org/10.1166/jnn.2004.034CrossRefGoogle Scholar
  59. 59.
    Paul R, Das SN, Dalui S, Gayen RN, Roy RK, Bhar R, Pal AK (2008) Synthesis of DLC films with different sp2/sp3 ratios and their hydrophobic behaviour. J Phys D Appl Phys 41:055309.  https://doi.org/10.1088/0022-3727/41/5/055309CrossRefGoogle Scholar
  60. 60.
    Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett 3:1625–1631.  https://doi.org/10.1021/nl034463pCrossRefGoogle Scholar
  61. 61.
    Wang XD, Summers CJ, Wang ZL (2004) Mesoporous single crystal ZnO nanowires epitaxially sheathed with Zn2SiO4. Adv Mater 16:1215–1218.  https://doi.org/10.1002/adma.200306505CrossRefGoogle Scholar
  62. 62.
    Shi L, Hao Q, Yu C, Mingo N, Kong X, Wang ZL (2004) Thermal conductivities of individual tin dioxide nanobelts. Appl Phys Lett 84:2638–2640.  https://doi.org/10.1063/1.1697622CrossRefGoogle Scholar
  63. 63.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858.  https://doi.org/10.1088/0953-8984/16/25/R01CrossRefGoogle Scholar
  64. 64.
    Bhattacharyya P, Basu PK, Saha H, Basu S (2006) Fast response methane sensor based on Pd(Ag)/ZnO/Zn MIM structure. Sens Lett 4:371–376.  https://doi.org/10.1166/sl.2006.050CrossRefGoogle Scholar
  65. 65.
    Basu PK, Bhattacharyya P, Saha N, Saha H, Basu S (2008) Methane sensing properties of platinum catalysed nano porous zinc oxide thin films derived by electrochemical anodization. Sens Lett 6:219–225.  https://doi.org/10.1166/sl.2008.024CrossRefGoogle Scholar
  66. 66.
    Fonash SJ, Roger JA, Dupuy CHS (1974) AC equivalent circuits for MIM structures. J Appl Phys 45:2907–2910.  https://doi.org/10.1063/1.1663699CrossRefGoogle Scholar
  67. 67.
    Suehle JS, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Dev Lett 14:118–120.  https://doi.org/10.1109/55.215130CrossRefGoogle Scholar
  68. 68.
    Simon I, Bârsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B 73:1–26.  https://doi.org/10.1016/s0925-4005(01)00793-6CrossRefGoogle Scholar
  69. 69.
    Mitzner KD, Sternhagen J, Galipeau DW (2003) Development of a micromachined hazardous gas sensor array. Sensors Actuators B 93:92–99.  https://doi.org/10.1016/S0925-4005(03)00244-2CrossRefGoogle Scholar
  70. 70.
    Chen Y, Xu PC, Li XX, Ren Y, Deng YH (2018) High-performance sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sens Actuators B 267:83–92.  https://doi.org/10.1016/j.snb.2018.03.180CrossRefGoogle Scholar
  71. 71.
    Karthigeyan A, Gupta RP, Scharnagl K, Burgmair M, Sharma SK, Eisele I (2002) A room temperature HSGFET ammonia sensor based on iridium oxide thin film. Sens Actuators B 85(1):145–153.  https://doi.org/10.1016/S0925-4005(02)00073-4CrossRefGoogle Scholar
  72. 72.
    Das N, Kar JP, Choi JH, Lee TI, Moon KJ, Myoung JM (2010) Fabrication and characterization of ZnO single nanowire-based hydrogen sensor. J Phys Chem C 114:1689–1693.  https://doi.org/10.1021/jp910515bCrossRefGoogle Scholar
  73. 73.
    Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam DW, Tok AI, Zhang Q, Zhang H (2012) Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1):63–67.  https://doi.org/10.1002/smll.201101016CrossRefGoogle Scholar
  74. 74.
    Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13(18):1384–1386.  https://doi.org/10.1002/1521-4095(200109)13:18%3c1384:AID-ADMA1384%3e3.0.CO;2-8CrossRefGoogle Scholar
  75. 75.
    Lundström I, Armgarth M, Spetz A, Winquist F (1986) Gas sensors based on catalytic metal-gate field-effect devices. Sens Actuators B 10(3–4):399–421.  https://doi.org/10.1016/0250-6874(86)80056-7CrossRefGoogle Scholar
  76. 76.
    Hong Y, Kim CH, Shin J, Kim KY, Kim JS, Hwang CS, Lee LH (2016) Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate. Sens Actuators B 232:653–659.  https://doi.org/10.1016/j.snb.2016.04.010CrossRefGoogle Scholar
  77. 77.
    Sysoev VV, Goschnick J, Schneider T, Strelcov H, Kolmakov A (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7(10):3182–3188.  https://doi.org/10.1021/nl071815CrossRefGoogle Scholar
  78. 78.
    Huang H, Liang B, Liu Z, Wang X, Chen D, Shen G (2012) Metal oxide nanowire transistors. J Mater Chem 22(27):13428–13445.  https://doi.org/10.1039/C2JM31679JCrossRefGoogle Scholar
  79. 79.
    Kandasamy S, Wlodarski W, Holland A, Nakagomi S, Kokubun Y (2007) Electrical characterization and hydrogen gas sensing properties of an-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor. Appl Phys Lett 90(6):064103.  https://doi.org/10.1063/1.2450668CrossRefGoogle Scholar
  80. 80.
    Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12):9903–9924.  https://doi.org/10.3390/s91209903CrossRefGoogle Scholar
  81. 81.
    Chen X, Wong CKY, Yuan CA, Zhang G (2013) Nanowire-based gas sensors. Sens Actuators B 177:178–195.  https://doi.org/10.1016/j.snb.2012.10.134CrossRefGoogle Scholar
  82. 82.
    Lao CS, Liu J, Gao P, Zhang L, Davidovic D, Tummala R, Wang ZL (2006) ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6(2):263–266.  https://doi.org/10.1021/nl052239p CrossRefGoogle Scholar
  83. 83.
    Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82(10):1613–1615.  https://doi.org/10.1063/1.1559438CrossRefGoogle Scholar
  84. 84.
    Mubeen S, Moskovits M (2011) Gate-tunable surface processes on a single-nanowire field-effect transistor. Adv Mater 23(20):2306–2312.  https://doi.org/10.1002/adma.201004203CrossRefGoogle Scholar
  85. 85.
    Dattoli EN, Davydov AV, Benkstein KD (2012) Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale 4(5):1760–1769.  https://doi.org/10.1039/c2nr11885hCrossRefGoogle Scholar
  86. 86.
    Chang SP, Li CW, Chen KJ, Chang SJ, Hsu CL, Hsueh TJ, Hsueh HT (2012) ZnO-nanowire-based extended-gate field-effect-transistor pH sensors prepared on glass substrate. Sci Adv Mater 4(11):74–1178.  https://doi.org/10.1166/sam.2012.1410CrossRefGoogle Scholar
  87. 87.
    Yu HY, Kang BH, Pi UH, Park CW, Choi SY, Kim GT (2005) V2O5 nanowire-based nanoelectronic devices for helium detection. Appl Phys Lett 86(25):253102.  https://doi.org/10.1063/1.1954894CrossRefGoogle Scholar
  88. 88.
    Park J, Kim Y, Kim G-T, Ha JS (2011) Facile fabrication of SWCNT/SnO2 nanowire heterojunction devices on flexible polyimide substrate. Adv Funct Mater 21:4159–4165.  https://doi.org/10.1002/adfm.201101470CrossRefGoogle Scholar
  89. 89.
    Gopel W, Schierbaum KD (1995) SnO2 sensors-current status and future prospects. Sens Actuators B 26:1–12.  https://doi.org/10.1016/0925-4005(91)80207-zCrossRefGoogle Scholar
  90. 90.
    Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304.  https://doi.org/10.1007/s002160051490CrossRefGoogle Scholar
  91. 91.
    Chen PC, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans Nanotechnol 7:668–682.  https://doi.org/10.1109/TNANO.2008.2006273CrossRefGoogle Scholar
  92. 92.
    Xu CN, Tamaki J, Miura N, Yamazoe N (1991) Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B Chem 3:147–155CrossRefGoogle Scholar
  93. 93.
    Freer EM, Grachev O, Duan X, Martin S, Stumbo DP (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5(7):525–530.  https://doi.org/10.1038/nnano.2010.106CrossRefGoogle Scholar
  94. 94.
    Zhang Y, Kolmakov A, Chretien S, Metiu H, Moskovits M (2004) Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett 4:403–407.  https://doi.org/10.1021/nl034968fCrossRefGoogle Scholar
  95. 95.
    Zhang J, Liu X, Wu S, Xu M, Guo X, Wang S (2010) Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor. J Mater Chem 20:6453–6459.  https://doi.org/10.1039/C0JM00457JCrossRefGoogle Scholar
  96. 96.
    Kolmakov A, Chen X, Moskovits M (2008) Functionalizing nanowires with catalytic nanoparticles for gas sensing application. J Nanosci Nanotechnol 8:111–121CrossRefGoogle Scholar
  97. 97.
    Moshfegh AZ (2009) Nanoparticle catalysts. J Phys D Appl Phys 42:233001.  https://doi.org/10.1088/0022-3727/42/23/233001CrossRefGoogle Scholar
  98. 98.
    Chen PC, Sukcharoenchoke S, Ryu K, Gomez de Arco L, Badmaev A, Wang C, Zhou CW (2010) 2,4,6-trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 22:1900–1904.  https://doi.org/10.1002/adma.200904005CrossRefGoogle Scholar
  99. 99.
    Cha SN, Jang JE, Choi Y, Amaratunga GAJ, Ho GW, Welland ME, Hasko DG, Kang DJ, Kim JM (2006) High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl Phys Lett 89:263102.  https://doi.org/10.1063/1.2416249CrossRefGoogle Scholar
  100. 100.
    Zeng Z, Wang K, Zhang Z, Chen J, Zhou W (2009) The detection of H2S at room temperature by using individual indium oxide nanowire transistors. Nanotechnology 20(4):045503.  https://doi.org/10.1088/0957-4484/20/4/045503CrossRefGoogle Scholar
  101. 101.
    Shen G, Liang B, Wang X, Chen PC, Zhou C (2011) Indium oxide nanospirals made of kinked nanowires. ACS Nano 5(3):2155–2161.  https://doi.org/10.1021/nn103358yCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yonghui Deng
    • 1
  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations