Advertisement

New Approaches to Improving Sensing Performance

  • Yonghui Deng
Chapter

Abstract

For desired sensing performances of the metal oxides-based gas sensors, emerged novel techniques including photoactivated (e.g., UV) gas sensing, surface plasmon resonance (SPR)-enhanced gas sensing, pulse-driven gas sensing and field-effect transistor (FET) gas sensors have been applied to develop sensors with higher sensitivity, faster response–recovery speed and lower limit of detection (LOD). By contrast, these new methods can simplify the reaction process of gas sensors and controllable detection of target gases of traditional gas sensors. In addition, with the development of nanodevices, visual gas sensors can produce enormous sensing proficiency and become a new development direction of gas sensors. In this chapter, the recent progress of new techniques and approaches for gas sensing is summarized and discussed.

Keywords

Metal oxides gas sensors Optical gas sensing Field-effect transistor Pulse-driven gas sensing 

References

  1. 1.
    Espid E, Taghipour F (2017) UV-LED photo-activated chemical gas sensors: a review. Crit Rev Solid State Mater Sci 42:416–432.  https://doi.org/10.1080/10408436.2016.1226161CrossRefGoogle Scholar
  2. 2.
    Fan S, Srivastava A, Dravid V (2009) UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett 95:142106.  https://doi.org/10.1063/1.3243458CrossRefGoogle Scholar
  3. 3.
    Costello B, Ewen R, Ratcliffe N, Richards M (2008) Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens Actuators B 134:945–952.  https://doi.org/10.1016/j.snb.2008.06.055CrossRefGoogle Scholar
  4. 4.
    Lakshmanan K, Vijayakumari A, Basu P (2018) Reliable and flow independent hydrogen sensor based on microwave-assisted ZnO nanospheres: improved sensing performance under UV light at room temperature. IEEE Sens J 18:1810–1819.  https://doi.org/10.1109/JSEN.2017.2788404CrossRefGoogle Scholar
  5. 5.
    Wagner T, Kohl C, Morandi S, Malag C, Donato N, Latino M, Neri G, Tiemann M (2012) Photoreduction of mesoporous In2O3: mechanistic model and utility in gas sensing. Chem Eur J 18:8216–8223.  https://doi.org/10.1002/chem.201103905CrossRefGoogle Scholar
  6. 6.
    Homola J, Yee S, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3–15.  https://doi.org/10.1016/S0925-4005(98)00321-9CrossRefGoogle Scholar
  7. 7.
    Wang J, Lin W, Cao E, Xu X, Liang W, Zhang X (2017) Surface plasmon resonance sensors on raman and fluorescence spectroscopy. Sensors 17:2719.  https://doi.org/10.3390/s17122719CrossRefGoogle Scholar
  8. 8.
    Do T, Ho T, Bui T, Pham Q, Giang H, Do T, Nguyen D, Tran D (2018) Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices. Beilstein J Nanotechnol 9:771–779.  https://doi.org/10.3762/bjnano.9.70CrossRefGoogle Scholar
  9. 9.
    Paliwal A, Sharma A, Tomar M, Gupta V (2017) Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sens Actuators B 250:679–685.  https://doi.org/10.1016/j.snb.2017.05.064CrossRefGoogle Scholar
  10. 10.
    Thepudom T, Lertvachirapaiboon C, Shinbo K, Kato K, Kaneko F, Kerdcharoen T, Baba A (2018) Surface plasmon resonance-enhanced photoelectrochemical sensor for detection of an organophosphate pesticide chlorpyrifos. MRS Commun 8:107–112.  https://doi.org/10.1557/mrc.2017.131CrossRefGoogle Scholar
  11. 11.
    Sharma S, Usha S, Shrivastav A, Gupta B (2017) A novel method of SPR based SnO2: GNP nano-hybrid decorated optical fiber platform for hexachlorobenzene sensing. Sens Actuators B 24613:927–936.  https://doi.org/10.1016/j.snb.2017.02.123CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Xie G, Xu M, Su Y, Tai H, Du H, Jiang Y (2018) Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles. Sens Actuators B 259:269–281.  https://doi.org/10.1016/j.snb.2017.12.052CrossRefGoogle Scholar
  13. 13.
    Suematsu K, Harano W, Oyama T, Shin Y, Watanabe K, Shimanoe K (2018) Pulse-driven semiconductor gas sensors toward ppt level toluene detection. Anal Chem 90:11219–11223.  https://doi.org/10.1021/acs.analchem.8b03076CrossRefGoogle Scholar
  14. 14.
    Yang T, Yang Q, Xiao Y, Sun P, Wang Z, Gao Y, Ma J, Sun Y, Lu G (2016) A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance. Sens Actuators B 228:529–538.  https://doi.org/10.1016/j.snb.2016.01.065CrossRefGoogle Scholar
  15. 15.
    Suematsu K, Shin Y, Ma N, Oyama T, Sasaki M, Yuasa M, Kida T, Shimanoe K (2015) Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles. Anal Chem 87:8407–8415.  https://doi.org/10.1021/acs.analchem.5b01767CrossRefGoogle Scholar
  16. 16.
    Triantafyllopoulou R, Tsamis C (2008) Detection of CO and NO using low power metal oxide sensors. Phys Status Solidi A 205:2643–2646.  https://doi.org/10.1002/pssa.200780182CrossRefGoogle Scholar
  17. 17.
    Ruiz A, Illa X, Diaz R, Romano-Rodriguez A, Morante J (2006) Analyses of the ammonia response of integrated gas sensors working in pulsed mode. Sens Actuators B 118:318–322. https://doi.org/10.1016/j.snb.2006.04.057CrossRefGoogle Scholar
  18. 18.
    Zhou X, Wang J, Wang Z, Bian Y, Wang Y, Han N, Chen Y (2018) Transilient. Response to acetone gas using the interlocking p+n field-effect transistor. Circuit Sens 18:1914.  https://doi.org/10.3390/s18061914CrossRefGoogle Scholar
  19. 19.
    Scharnagl K, Karthigeyan A, Burgmair M, Zimmer M, Doll T, Eisele I (2001) Low temperature hydrogen detection at high concentrations: comparison of platinum and iridium. Sens Actuators B 80:163–168.  https://doi.org/10.1016/S0924-4247(01)00672-0CrossRefGoogle Scholar
  20. 20.
    Yokosawa K, Saitoh K, Nakano S, Goto Y, Tsukada K (2008) FET hydrogen-gas sensor with direct heating of catalytic metal. Sens Actuators B 130:90–99.  https://doi.org/10.1016/j.snb.2007.07.084CrossRefGoogle Scholar
  21. 21.
    Ahn J, Yun J, Choi Y, Park I (2014) Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection. Appl Phys Lett 104:013508.  https://doi.org/10.1063/1.4861228CrossRefGoogle Scholar
  22. 22.
    Sharma B, Sharma A, Kim J (2018) Recent advances on H2 sensor technologies based on MOX and FET devices: a review. Sens Actuators B 262:758–770.  https://doi.org/10.1016/j.snb.2018.01.212CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yonghui Deng
    • 1
  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations