Advertisement

Key Retrieval from AES Architecture Through Hardware Trojan Horse

  • Sivappriya ManivannanEmail author
  • N. Nalla AnandakumarEmail author
  • M. Nirmala DeviEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 969)

Abstract

The study of Hardware Trojan and its impact is a cutting edge research topic today. Hardware Trojan Horses (HTH) are inserted by an adversary either during design or fabrication phase of IC which does the malicious alterations in the circuit. The main objective of this paper is to insert two new hardware Trojan designs on cryptosystem and study its impact by calculating path delay, power consumption and area utilization. In particular, the proposed Trojan is designed using single trigger with multiple payloads structure. These designs are imposed to do the malicious action of fault injection on the penultimate mixcolumn of AES-128, which enables to extract the entire 128 bit secret key with minimum time of activation on the HTHs by performing Differential Fault Analysis (DFA). Both the Trojan inserted AES designs are implemented on the Xilinx Virtex-5 FPGAs. The proposed Trojan designs, HT1 and HT2 have minimal area overhead of 0.7% and 1.5% respectively with frequency overhead of 2% each. Provided, the models designed have a negligible effect on path delay and power consumption when compared to the original AES.

Keywords

Hardware Trojan Horse (HTH) Differential Fault Analysis (DFA) AES Trojan detection FPGA 

References

  1. 1.
    Abusaidi, P., Klein, M., Philofsky, B.: Virtex-5 FPGA System Power Design Considerations, Xilinx White Paper WP285 (v1.0), 14 February 2008Google Scholar
  2. 2.
    Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC fingerprinting. In: IEEE Symposium on Security and Privacy (SP 2007), pp. 296–310, May 2007Google Scholar
  3. 3.
    Alkabani, Y., Koushanfar, F.: Consistency-based characterization for IC Trojan detection. In: IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers, pp. 123–127, November 2009Google Scholar
  4. 4.
    Anandakumar, N.N., Dillibabu, S.: Correlation power analysis attack of AES on FPGA using customized communication protocol. In: Proceedings of the Second International Conference on Computational Science, Engineering and Information Technology, CCSEIT 2012, pp. 683–688 (2012)Google Scholar
  5. 5.
    Bhasin, S., Danger, J.L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware Trojan Horses in cryptographic IP cores. In: Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 15–29, August 2013Google Scholar
  6. 6.
    Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45126-6_12CrossRefGoogle Scholar
  7. 7.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_4CrossRefGoogle Scholar
  8. 8.
    Bulens, P., Standaert, F.-X., Quisquater, J.-J., Pellegrin, P., Rouvroy, G.: Implementation of the AES-128 on Virtex-5 FPGAs. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 16–26. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68164-9_2CrossRefGoogle Scholar
  9. 9.
    Infosecurity: The stealthy Hardware Trojan that can affect INTEL IVY Bridge processor (2013). https://www.infosecurity-magazine.com/news/the-stealthy-hardware-trojan-that/
  10. 10.
    Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In: IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 51–57, June 2008Google Scholar
  11. 11.
    Karunakaran, D.K., Mohankumar, N.: Malicious combinational Hardware Trojan detection by gate level characterization in 90 nm technology. In: Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp. 1–7, July 2014Google Scholar
  12. 12.
    Kasper, M., et al.: Side channels as building blocks. J. Cryptographic Eng. 2(3), 143–159 (2012)CrossRefGoogle Scholar
  13. 13.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  14. 14.
    Plusquellic, J., Saqib, F.: Detecting Hardware Trojans using delay analysis. In: Bhunia, S., Tehranipoor, M.M. (eds.) The Hardware Trojan War, pp. 219–267. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-68511-3_10CrossRefGoogle Scholar
  15. 15.
    Potkonjak, M., Nahapetian, A., Nelson, M., Massey, T.: Hardware Trojan Horse detection using gate-level characterization. In: 46th ACM/IEEE Design Automation Conference, pp. 688–693, July 2009Google Scholar
  16. 16.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45418-7_17CrossRefzbMATHGoogle Scholar
  17. 17.
    Salmani, H., Tehranipoor, M., Plusquellic, J.: A layout-aware approach for improving localized switching to detect Hardware Trojans in integrated circuits. In: IEEE International Workshop on Information Forensics and Security, pp. 1–6, December 2010Google Scholar
  18. 18.
    Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security and Cryptography, p. 356. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29656-7CrossRefGoogle Scholar
  19. 19.
    Vaddi, E., Gaddam, K., Maniam, R.K., Mallavajjala, S.A., Dasari, S., Nirmala Devi, M.: Detection and diagnosis of Hardware Trojan using power analysis. In: Abawajy, J.H., Mukherjea, S., Thampi, S.M., Ruiz-Martínez, A. (eds.) SSCC 2015. CCIS, vol. 536, pp. 519–529. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22915-7_47CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringAmrita School of Engineering, Coimbatore, Amrita Vishwa VidyapeethamCoimbatoreIndia
  2. 2.Hardware Security Research GroupSociety for Electronic Transactions and SecurityChennaiIndia

Personalised recommendations