Advertisement

Diversity and Progress Controlled Gravitational Search Algorithm for Balancing Load in Cloud

  • Divya Chaudhary
  • Bijendra Kumar
  • Shaksham GargEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 969)

Abstract

Load scheduling is used to distribute load over the cloud. Various load scheduling techniques are used for efficient functioning of cloud. Recently many search based optimization techniques have been successfully used for the process of load scheduling. These optimization techniques considerably reduces the time which is required to solve the problem of load scheduling in cloud computing. This paper discusses about Diversity and Progress Controlled Gravitational Search Algorithm. The results of proposed approach are compared with Gravitational Search Algorithm and Particle Swarm Optimization. Experimental results confirm that the proposed approach is better than PSO and GSA.

Keywords

Cloud computing Load scheduling Gravitational search algorithm Exploration Exploitation 

References

  1. 1.
    Khiyaita, A., Bakkali, El., Zbakh, M., Kettani, D.E.: Load balancing cloud computing: state of art. In: IEEE National Days of Network Security and Systems (JNS2), pp. 106–109. IEEE (2012)Google Scholar
  2. 2.
    Chaudhary, D., Kumar, B.: An analysis of the load scheduling algorithms in the cloud computing environment: a survey. In: IEEE 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. IEEE (2014)Google Scholar
  3. 3.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  5. 5.
    Badr, A., Fahmy, A.: A proof of convergence for ant algorithms. Inf. Sci. 160, 267–279 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefGoogle Scholar
  7. 7.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24, 117–122 (2011)CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Chen, Y., Sun, R., Jing, S., Yang, B.: A task scheduling algorithm based on PSO for grid computing. Int. J. Comput. Intell. Res. IJCIR 4(1), 37–43 (2008)Google Scholar
  9. 9.
    Chaudhary, D., Chhillar, R.S.: A new load balancing technique for virtual machine cloud computing environment. Int. J. Comput. Appl. 69(23), 37–40 (2013)Google Scholar
  10. 10.
    Garg, S.K., Buyya, R.: Network CloudSim: modelling parallel applications in cloud simulations. In: 4th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Melbourne, Australia (2011)Google Scholar
  11. 11.
    Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments. SCI, vol. 146, pp. 173–214. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69277-5_7
  12. 12.
    Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: A particle swarm optimization algorithm for makespan and total flow time minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 177(3), 1930–1947 (2007)CrossRefGoogle Scholar
  13. 13.
    Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage stability. In: International Conference on Intelligent System Application to Power System, pp. 117–121. IEEE (1999)Google Scholar
  14. 14.
    Zavala, A.E.M., Aguirre, A.H., Diharce, E.R.V., Rionda, S.B.: Constrained optimisation with an improved particle swarm optimisation algorithm. Int. J. Intell. Comput. Cybern. 1(3), 425–453 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mathiyalagan, P., Dhepthie, U., Sivanandam, S.: Grid scheduling using enhanced PSO algorithm. Int. J. Comput. Sci. Eng. IJCSE 02(02), 140–145 (2010)Google Scholar
  16. 16.
    Liu, H., Abraham, A., Hassanien, A.: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Gener. Comput. Syst. 26(8), 1336–1343 (2010)CrossRefGoogle Scholar
  17. 17.
    Izakian, H., Ladani, B., Abraham, A., Snasel, V.: A discrete particle swarm optimization approach for grid job scheduling. Int. J. Innov. Comput. Inf. Control 6(9), 4219–4233 (2010)Google Scholar
  18. 18.
    Kang, Q., He, H.: A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems. Microprocess. Microsyst. 35(1), 10–17 (2011)CrossRefGoogle Scholar
  19. 19.
    Pandey, S., et al.: A particle swarm optimization based heuristic for scheduling workflow applications in cloud computing environments. In: 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 400–407. IEEE (2010)Google Scholar
  20. 20.
    Kumar, D., Raza, Z.: A PSO based VM resource scheduling model for cloud computing. In: IEEE International Conference on Computational Intelligence & Communication Technology (CICT), pp. 213–219. IEEE (2015)Google Scholar
  21. 21.
    Buyya, R., Pandey, S., Vecchiola, C.: Cloudbus toolkit for market-oriented cloud computing. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 24–44. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10665-1_4CrossRefGoogle Scholar
  22. 22.
    Saeidi-Khabisi, F., Rashedi, E.: Fuzzy gravitational search algorithm. In: 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE), pp. 156–160 (2012)Google Scholar
  23. 23.
    Chaudhary, D., Kumar, B.: J. Inf. Knowl. Manage. 17, 1850009 (2018).  https://doi.org/10.1142/S0219649218500090CrossRefGoogle Scholar
  24. 24.
    Chaudhary, D., Kumar, B., Khanna, R.: NPSO based cost optimization for load scheduling in cloud computing. In: Thampi, S.M., Pérez, G.M., Westphall, C.B., Hu, J., Fan, C.I., Mármol, Fg (eds.) SSCC 2017. CCIS, vol. 746, pp. 109–121. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-6898-0_9CrossRefGoogle Scholar
  25. 25.
    Chaudhary, D., Kumar, B.: Linear improved gravitational search algorithm for load scheduling in cloud computing environment (LIGSA-C). Int. J. Comput. Netw. Inf. Secur. (IJCNIS), 10(4), 38–47 (2018).  https://doi.org/10.5815/ijcnis.2018.04.05CrossRefGoogle Scholar
  26. 26.
    Sotomayor, B., Montero, R.S., Llorente, I.M., et al.: Virtual infrastructure management in private and hybrid clouds. IEEE Internet Comput. 13(5), 14–22 (2009)CrossRefGoogle Scholar
  27. 27.
    Eriksson, E., Dán, G., Fodor, V.: Prediction-based load control and balancing for feature extraction in visual sensor networks. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Divya Chaudhary
    • 1
  • Bijendra Kumar
    • 1
  • Shaksham Garg
    • 1
    Email author
  1. 1.Department of Computer EngineeringNetaji Subhas Institute of TechnologyDwarkaIndia

Personalised recommendations