Advertisement

Fuzzy Multi-objective Geometric Programming (FMOGP) Problem

  • Sahidul IslamEmail author
  • Wasim Akram Mandal
Chapter
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)

Abstract

In real-life problem, it is possible to soften the rigid requirements of the decision-maker (DM) to strictly minimize the objective function and strictly satisfy the constraints.

References

  1. R.E. Bellman, L.A. Zadeh, Decision making in a fuzzy environment. Manage. Sci. 17, 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  2. M.P. Biswal, Fuzzy programming technique to solve multi-objective geometric programming problems. Fuzzy Sets Syst. 51(1), 67–71 (1992)MathSciNetCrossRefGoogle Scholar
  3. K. Das, T.K. Roy, M. Maiti, Multi-item inventory model with quantity-dependent inventory costs and demand-dependent unit cost under imprecise objective and restrictions: a geometric programming approach. Prod. Plann. Control 11(8), 781–788 (2000)CrossRefGoogle Scholar
  4. R.J. Duffin, E.L. Peterson, C. Zener, Geometric Programming Theory and Applications (Wiley, New York, 1967)Google Scholar
  5. S. Islam, T.K. Roy, A new fuzzy multi-objective programming: entropy based geometric programming and its application of transportation problems. Eur. J. Oper. Res. 173(2), 387–404 (2006)MathSciNetCrossRefGoogle Scholar
  6. S. Islam, T.K. Roy, Multi-objective geometric-programming problem and its application. Yugoslav J. Oper. Res. 20, 213–227 (2010)MathSciNetCrossRefGoogle Scholar
  7. N.K. Mandal, T.K. Roy, M. Maiti, Multi-objective fuzzy inventory model with three constraints: a geometric programming approach. Fuzzy Sets Syst. 150(1), 87–106 (2005)MathSciNetCrossRefGoogle Scholar
  8. G.S. Mahapatra, T.K. Roy, Single and multi container maintenance model: a fuzzy geometric programming approach. J. Math. Res. 1(2), 47–60 (2009)MathSciNetzbMATHGoogle Scholar
  9. A.K. Ojha, K.K. Biswal, Multi-objective geometric programming problem with weighted mean method. Int. J. Comput. Sci. Inf. Secur. 7(2) (2010)Google Scholar
  10. D. Panda, S. Kar, M. Maiti, Multi-item EOQ model with hybrid cost parameters under fuzzy/fuzzy-stochastic resource constraints: a geometric programming approach. Comput. Math Appl. 56, 2970–2985 (2008a)MathSciNetCrossRefGoogle Scholar
  11. D. Panda, S. Kar, M. Maiti, Multi-item EOQ model with hybrid cost parameters under fuzzy/fuzzy stochastic resource constraints: a geometric programming approach. Comput. Math Appl. 56(11), 2970–2985 (2008b)MathSciNetCrossRefGoogle Scholar
  12. A.L. Peressini, F.E. Sullivan, J.J. Jr. Uhl, The Mathematics Nonlinear Programming (Springer-Verlag, New York, 1993)Google Scholar
  13. R.K. Verma, Fuzzy geometric programming with several objective functions. Fuzzy Sets Sys. 35(1), 115–120 (1990)MathSciNetCrossRefGoogle Scholar
  14. H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Sys. 1, 45–55 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Beldanga D.H. Senior MadrasahBeldanga, MurshidabadIndia

Personalised recommendations