Advertisement

Contact Properties of Tires

  • Yukio NakajimaEmail author
Chapter

Abstract

Tires are a vehicle’s only points of contact with the road. The contact properties of a tire defined by the contact pressure distribution and footprint shape of the contact patch are thus related to not only maneuverability but also riding comfort, noise, durability, rolling resistance, wear and traction/braking.

References

  1. 1.
    S.K. Clark, The Rolling Tire Under Load, SAE Paper, No. 990B, 1965Google Scholar
  2. 2.
    K. Yamagishi, J.T. Jenkins, The circumferential contact problem for the belted radial tire. J. Appl. Mech. 47, 512–518 (1980)zbMATHGoogle Scholar
  3. 3.
    K. Yamagishi, J.T. Jenkins, Singular perturbation solutions of the circumferential contact problem for the belted radial truck and bus tire. J. Appl. Mech. 47, 519–524 (1980)zbMATHCrossRefGoogle Scholar
  4. 4.
    J.T. Jenkins, The circumferential contact problem for the belted radial passenger car tire. Vehicle Sys. Dyn. 11, 325–343 (1982)CrossRefGoogle Scholar
  5. 5.
    S.C. Huang, The vibration of rolling tyres in ground contact. Int. J. Vehicle Des. 13(1), 78–95 (1992)Google Scholar
  6. 6.
    S.C. Huang, B.S. Hsu, An approach to the dynamic analysis of rotating tire-wheel-suspension units. J. Sound Vib. 156(3), 505–519 (1992)zbMATHCrossRefGoogle Scholar
  7. 7.
    S. Gong, A Study of In-plane Dynamics of Tires. Ph.D. Thesis, Delft University of Technology, 1993Google Scholar
  8. 8.
    C.R. Dohrmann, Dynamics of a tire wheel-suspension assembly. J. Sound Vib. 210(5), 627–642 (1998)CrossRefGoogle Scholar
  9. 9.
    A. Gasmi et al., Closed-form solution of a shear deformable, extensional ring in contact between two rigid surfaces. Int. J. Solids Struct. 48, 843–853 (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    S. Timoshenko, S.W. Krieger, Theory of Plates and Shell (McGraw-hill, 1959)Google Scholar
  11. 11.
    T. Akasaka, K. Kabe, Deformation and cord tension of a bias tire in contact with the road. Tire Sci. Technol. 5(4), 172–201 (1977)CrossRefGoogle Scholar
  12. 12.
    T. Akasaka et al., Two-dimensional contact pressure distribution of a radial tire. Tire Sci. Technol. 18(2), 80–103 (1990)CrossRefGoogle Scholar
  13. 13.
    S. Kagami et al., Analysis of the contact deformation of a radial tire with camber angle. Tire Sci. and Technol. 23(1), 26–51 (1995)CrossRefGoogle Scholar
  14. 14.
    H. Shiobara et al., One-dimensional contact pressure distribution of radial tires in motion. Tire Sci. and Technol. 23(2), 116–135 (1995)CrossRefGoogle Scholar
  15. 15.
    H. Shiobara et al., Two-dimensional contact pressure distribution of a radial tire in motion. Tire Sci. and Technol. 24(4), 294–320 (1996)CrossRefGoogle Scholar
  16. 16.
    S. Kim et al., Contact pressure distribution of radial tire in motion with camber angle. Tire Sci. and Technol. 28(1), 2–32 (2000)CrossRefGoogle Scholar
  17. 17.
    P. W. A. Zegelaar, The dynamic Response of Tyres to Brake Torque Variations and Road Unevennesses. Ph.D. Thesis, Delft University of Technology, 1998Google Scholar
  18. 18.
    J. P. Maurice, Short Wavelength and Dynamic Tyre Behavior Under Lateral and Combined Slip Conditions. Ph.D. Thesis, Delft University of Technology, 2000Google Scholar
  19. 19.
    A.J.C. Schmeitz, A Semi-empirical Model of Pneumatic Tyre Rolling Over Arbitrarily Uneven Road Surfaces. Ph.D. Thesis, Delft University of Technology, 2004Google Scholar
  20. 20.
    H. Kaga et al., Stress analysis of a tire under vertical load by a finite element method. Tire Sci. Technol. 5(2), 102–118 (1977)CrossRefGoogle Scholar
  21. 21.
    M.J. Trinko, Ply and rubber stresses and contact forces for a loaded radial tire. Tire Sci. Technol. 11(1–4), 20–38 (1984)Google Scholar
  22. 22.
    J.T. Tielking, A finite element tire model. Tire Sci. Technol. 11(1–4), 50–63 (1984)Google Scholar
  23. 23.
    R.A. Ridha et al., Finite element modeling of a homogeneous pneumatic tire subjected to footprint loadings. Tire Sci. Technol. 13(2), 91–110 (1985)CrossRefGoogle Scholar
  24. 24.
    H. Rothert et al., On the contact problem of tires, including friction. Tire Sci. Technol. 13(2), 111–123 (1985)CrossRefGoogle Scholar
  25. 25.
    R. Prabhakaran, Interactive graphics for the analysis of tires. Tire Sci. Technol. 13(3), 127–146 (1985)CrossRefGoogle Scholar
  26. 26.
    G. Laging, H. Rothert, Numerical results of tire-test drum interaction. Tire Sci. Technol. 14(3), 160–175 (1986)CrossRefGoogle Scholar
  27. 27.
    H. Rothert, R. Gall, On the three dimensional computation of steel-belted tires. Tire Sci. Technol. 14(2), 116–124 (1986)CrossRefGoogle Scholar
  28. 28.
    Y. Nakajima, Tire analysis by super-computer. Hitachi-Hyoron 72(5), 39–44 (1990). (in Japanese)Google Scholar
  29. 29.
    K. Ishihara, Development of a three-dimensional membrane element for the finite element analysis of tires. Tire Sci. Technol. 19(1), 23–36 (1991)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Padovan, I. Zeid, On the development of traveling load finite elements. Comput. Struct. 12, 77–83 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    J. Padovan, I. Zeid, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981)CrossRefGoogle Scholar
  32. 32.
    R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to point load or ground contact. Tire Sci. Technol. 15, 243–260 (1987)CrossRefGoogle Scholar
  33. 33.
    L.O. Faria et al., A three-dimensional rolling contact model for a reinforced rubber tire. Tire Sci. Technol. 17(3), 217–233 (1989)CrossRefGoogle Scholar
  34. 34.
    L.O. Faria et al., Tire modeling by finite elements. Tire Sci. Technol. 20(1), 33–56 (1992)CrossRefGoogle Scholar
  35. 35.
    A.A. Goldstein, Finite element analysis of a quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24, 278–293 (1996)CrossRefGoogle Scholar
  36. 36.
    Y. Kaji, Improvements in tire wear based on 3D finite element analysis, in Tire Technology EXPO, 2003Google Scholar
  37. 37.
    M. Shiraishi et al., Simulation of a dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000)CrossRefGoogle Scholar
  38. 38.
    M. Koide et al., Optimization for motorcycle tire using explicit FEM. Tire Sci. Technol. 29(4), 230–243 (2001)CrossRefGoogle Scholar
  39. 39.
    Y. Osawa, Tire analysis by using new hour-glass control, in LS-DYNA Users Week, Tokyo, 2005. (in Japanese)Google Scholar
  40. 40.
    J.C. Cho, B.C. Jung, Prediction of tread pattern wear by an explicit finite element model. Tire Sci. Technol. 35(4), 276–299 (2007)CrossRefGoogle Scholar
  41. 41.
    Y. Nakajima et al., Application of neural network for optimization of tire design. Tire Sci. Technol. 27(2), 62–83 (1999)CrossRefGoogle Scholar
  42. 42.
    Y. Nakajima et al., Theory of optimum tire contour and its application. Tire Sci. Technol. 24(3), 184–203 (1996)CrossRefGoogle Scholar
  43. 43.
    T. Akasaka, K. Kabe, Deformation and cord tension of a bias tire in contact with the road. Tire Sci. Technol. 5(4), 172–201 (1977)CrossRefGoogle Scholar
  44. 44.
    J. Rotta, Zur Statik des Luftreifens. Ing. Archiv, p. 129, 1949Google Scholar
  45. 45.
    F. Böhm, Mechanik des Gurtelreifens. ATZ 69(8), 255–261 (1967)Google Scholar
  46. 46.
    R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Menlo Park, CA, 1991)Google Scholar
  47. 47.
    G.E.P. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley, New York, NY, 1987)zbMATHGoogle Scholar
  48. 48.
    A.C. Atkinson, A.N. Donev, Optimum Experimental Designs (Oxford University Press, Oxford, UK, 1992)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Science and Engineering, School of Advanced EngineeringKogakuin UniversityHachiojiJapan

Personalised recommendations