Advertisement

Standing Waves in Tires

  • Yukio NakajimaEmail author
Chapter

Abstract

The phenomenon of standing waves in tires occurs in the sidewall and tire tread area when the vehicle speed exceeds a critical speed. Two approaches can be adopted in the study of standing waves: the analytical approach and FEA. The analytical approach, such as the adoption of a membrane model or elastic ring model, is further classified into the wave propagation approach and resonance approach. This chapter discusses the analytical approach and FEA for standing waves.

Supplementary material

References

  1. 1.
    E.R. Gardner, T. Worswick, Behaviour of tyres at high speed. Trans. I.R.I. 27, 127–146 (1951)Google Scholar
  2. 2.
    H. Sakai, Tire Engineering (Guranpuri-Shuppan, 1987) (in Japanese)Google Scholar
  3. 3.
    D.M. Turner, Wave phenomina in tyres at high speed, in Proceedings of 3rd Rubber Technology, London (1954), pp. 735–748Google Scholar
  4. 4.
    W.F. Ames, Waves in tyres: part I: literature review on travelling waves. Tex. Res. J. 40, 498–503 (1970)CrossRefGoogle Scholar
  5. 5.
    F. Böhm, Zu Startik und Dynamik des Gurtelreifens. ATZ 69(8), 255–261 (1967)Google Scholar
  6. 6.
    T. Akasaka, Standing wave of running tire with high speed. Bull. Fac. Eng., Chuo Univ. B-5(11), 1–9 (1959)Google Scholar
  7. 7.
    H. Sakai, Radial vibrations of a pneumatic tyre at high speed. JSAE J. 19(7), 504–510 (1965). (in Japanese)Google Scholar
  8. 8.
    T. Akasaka, K. Yamagishi, On the standing waves in the shell wall of a running tyre. Trans. Jpn. Soc. Aero. Space Sci. 11(18), 12–20 (1968)Google Scholar
  9. 9.
    T. Akasaka, Y. Sakai, On the standing waves in radial tire. Fukugo Zairyo 1(1), 26–34 (1972)Google Scholar
  10. 10.
    T. Akasaka et al., Critical velocity due to standing wave in radial tire. Fukugo Zairyo 3(3), 8–11 (1974)Google Scholar
  11. 11.
    A. Chatterjee et al., On contact-induced standing waves in rotating tires: experiment and theory. J. Sound Vib. 227, 1049–1081 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Pacejka, Analysis of tire properties, in Mechanics of Pneumatic Tires, ed. by S.K. Clark (U.S. Department of Transportation, 1981)Google Scholar
  13. 13.
    Y.D. Kwon, D.C. Prevorsek, Formation of standing waves in radial tires. Tire Sci. Technol. 12(1–4), 44–63 (1984)CrossRefGoogle Scholar
  14. 14.
    M. Endo et al., Flexural vibration of a thin rotating ring. J. Sound Vib. 92, 261–272 (1984)CrossRefGoogle Scholar
  15. 15.
    E. Vinesee, H. Nicollet, Surface waves on the rotating tyre: an application of functional analysis. J. Sound Vib. 126, 85–96 (1988)CrossRefGoogle Scholar
  16. 16.
    A.V. Metrikine, M.V. Tochilin, Steady-state vibrations of an elastic ring under moving load. J. Sound Vib. 232(3), 511–524 (2000)Google Scholar
  17. 17.
    V. Krylov, O. Gilbert, On the theory of standing waves in tyres at high vehicle speeds. J. Sound Vib. 329, 4398–4408 (2010)Google Scholar
  18. 18.
    W. Soedel, On the dynamic response of rolling tyres according to thin shell approximations. J. Sound Vib. 41, 233–246 (1975)CrossRefGoogle Scholar
  19. 19.
    J. Padovan, On viscoelasticity and standing waves in tires. Tire Sci. Technol. 4(4), 233–246 (1976)CrossRefGoogle Scholar
  20. 20.
    S.C. Huang, W. Soedel, Effects of Coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. J. Sound Vib. 115, 253–274 (1987)CrossRefGoogle Scholar
  21. 21.
    J.R. Cho et al., Numerical investigation of tire standing wave using 3-D patterned tire model. J. Sound Vib. 305, 795–807 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Padovan, On standing waves in tires. Tire Sci. Technol. 5(2), 83–101 (1977)CrossRefGoogle Scholar
  23. 23.
    I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981)CrossRefGoogle Scholar
  24. 24.
    J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng. 57, 297–367 (1986)Google Scholar
  25. 25.
    R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol. 15(4), 243–260 (1987)CrossRefGoogle Scholar
  26. 26.
    R.A. Brockman, W.R. Braisted, Critical speed estimation for aircraft tires. Tire Sci. Technol. 22(2), 121–144 (1994)CrossRefGoogle Scholar
  27. 27.
    S. Gong, in A Study of In-plane Dynamics of Tires. Ph.D. Thesis, Delft University of Technology (1993)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Science and Engineering, School of Advanced EngineeringKogakuin UniversityHachiojiJapan

Personalised recommendations