Advertisement

Cornering Properties of Tires

  • Yukio NakajimaEmail author
Chapter

Abstract

The motion of a vehicle is determined by the force and moment generated by tires, which are the only points of contact between a vehicle and the road.

Supplementary material

References

  1. 1.
    H.B. Pacejka, Tyre and Vehicle Dynamics (Butterworth Heinemann, 2002)Google Scholar
  2. 2.
    H. Sakai, Tire Mechanics (Guranpuri-Shuppan, 1987). (in Jsapanese)Google Scholar
  3. 3.
    E. Fiala, Seitenkrafte am Rollenden Luftreifen. VDI Zeitschrift 96, 973–979 (1954)Google Scholar
  4. 4.
    E. Frank, Grundlagen zur Berechnung der Seitenführungskennlinien von Reifen. Kautchuk und Gummi 18(8), 515–533 (1965)Google Scholar
  5. 5.
    H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 1: review of theories of rubber friction. Int. J. Vehicle Des. 2(2), 78–110 (1981)Google Scholar
  6. 6.
    H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 2: experimental investigation of rubber friction and deformation of a tyre. Int. J. Vehicle Des. 2(3), 182–226 (1981)Google Scholar
  7. 7.
    H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 3: calculation of the six components of force and moment of a tyre. Int. J. Vehicle Des. 2(3), 335–372 (1981)Google Scholar
  8. 8.
    H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 4: investigations of the influences of running conditions by calculation and experiment. Int. J. Vehicle Des. 3(3), 333–375 (1982)Google Scholar
  9. 9.
    K. Kabe, N. Miyashita, A new analytical tire model for cornering simulation. Part I: cornering power and self-aligning torque power. Tire Sci. Technol. 34(2), 84–99 (2006)CrossRefGoogle Scholar
  10. 10.
    N. Miyashita, K. Kabe, A new analytical tire model for cornering simulation. Part II: cornering power and self-aligning torque power. Tire Sci. Technol. 34(2), 100–118 (2006)CrossRefGoogle Scholar
  11. 11.
    N. Miyashita et al., Analysis model of myu-S curve using generalized skewed-parabola. JSAE Rev. 24, 87–92 (2003)CrossRefGoogle Scholar
  12. 12.
    M. Mizuno, et al., The method of making tire model for vehicle dynamics analysis–extension to full set tire model using tire data under pure conditions, in Proceedings of JSAE Conference, No. 20075936, 2007Google Scholar
  13. 13.
    M. Mizuno, Study on Tire Model for Vehicle Dynamics. Ph.D. Thesis, Nagoya University, 2010 (in Japanese)Google Scholar
  14. 14.
    M. Pearson et al., TameTire: introduction to the model. Tire Sci. Technol. 44(2), 102–119 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Durand-Gasselin et al., Assessing the thermos-mechanical TaMeTirE model in offline vehicle simulation and driving simulator tests. Vehicle Sys. Dyn. 48(Supplement), 211–229 (2010)CrossRefGoogle Scholar
  16. 16.
    P. Fevier, I.G. Fandard, Thermische und mechanische Reifenmodellierung zur Simulation des Fahrvehaltens. ATZ Worldw. 110, 26–31 (2008)CrossRefGoogle Scholar
  17. 17.
    P.W.A. Zegelaar, The Dynamic Response of Tyres to Brake Torque Variations and Road Unevennesses. Ph.D. Thesis, University of Delft of Tecnology, 1998Google Scholar
  18. 18.
    J.P. Maurice, Short Wavelength and Dynamics Tyre Behaviour Under Lateral and Combined Slip Conditions. Ph.D. Thesis, University of Delft of Tecnology, 1999Google Scholar
  19. 19.
    M. Gipser, DNS-tire, a dynamical nonlinear spatial tire model in vehicle dynamics, in Proceedings of 2nd Workshop on Road Vehicle-Systems and Related Mathematics, pp. 29–48, Torino, Italy, 1987Google Scholar
  20. 20.
    M. Gipser, et al., Dynamics tyre forces response to road unevenness, in Proceedings of 2nd International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Supplement to Vehicle System Dynamics, vol. 27, pp. 94–108, 1997Google Scholar
  21. 21.
    M. Gipser, FTire, a new fast tire model for ride comfort simulation, in International ADAMS User’s Conference, Berlin, Germany, 1999Google Scholar
  22. 22.
    M. Gipser, FTire–the tire simulation model for all applications related to vehicle dynamics. Vehicle Sys. Dyn. 45(Supplement), 139–151 (2007)CrossRefGoogle Scholar
  23. 23.
    C. Oertel, A. Fandre, Ride conform simulations and steps towards life time calculations: RMOD-K and ADAMS, in International ADAMS User’s Conference, Berlin, Germany, 1999Google Scholar
  24. 24.
    G. Gim, P.E. Nikravesh, An analytical model of pneumatic tires for vehicle dynamic simulations, part 1: pure slips. Int. J. Vehicle Des. 11(6), 589–618 (1990)Google Scholar
  25. 25.
    G. Gim, P.E. Nikravesh, An analytical model of pneumatic tires for vehicle dynamic simulations, part 2: comprehensive slips. Int. J. Vehicle Des. 12(1), 19–39 (1991)Google Scholar
  26. 26.
    G. Gim, P.E. Nikravesh, An analytical model of pneumatic tires for vehicle dynamic simulations: part 3. Validation against experimental data. Int. J. Vehicle Des. 12(2), 217–228 (1991)Google Scholar
  27. 27.
    G. Gim, P.E. Nikravesh, A three-dimensional tire model for steady-state simulations of vehicles, SAE Paper, No. 931913, 1993Google Scholar
  28. 28.
    Eds, P. Lugner and M. Plochl, Tire Model Performance Test (TMPT). Supplement to Vehicle System Dynamics, Vol. 45, Taylor & Francis, 2007Google Scholar
  29. 29.
    A. Higuchi, Transient Response of Tyres at Large Wheel Slip and Camber. Ph.D. Thesis, University of Delft, 1997Google Scholar
  30. 30.
    von B. Schlippe, R. Dietrich, Das Flattern eines bepneuten Rades, Bericht 140 der Lilienthal Gesellschaft, 1941 Google Scholar
  31. 31.
    R.F. Smiley, Correlation and extension of linearized theories for tire motion and wheel shimmy, NASA Report 1299, 1957Google Scholar
  32. 32.
    L. Segel, Force and moment response of pneumatic tires to lateral motion inputs. Trans. ASME, J. Eng. Ind. 88B, 37–44 (1966)Google Scholar
  33. 33.
    K. Tanaka, I. Kageyama, Study of tire model for the estimation of design parameters. Trans. JSAE 30(2), 99–104 (1999)Google Scholar
  34. 34.
    K. Tanaka, I. Kageyama, Study of tire design methodology based on vehicle dynamics and tire mechanics. Nippon Gomukyoukai Shi 79(4), 225–230 (2006)Google Scholar
  35. 35.
    M. Abe, Vehicle Dynamics and Control 2nd ed. (Denkidaigaku ShuppanKyoku, Tokyo, 2012)Google Scholar
  36. 36.
    N. Miyashita, A study of transient cornering property by use of an analytical tire model, Trans. JSAE, No. 92-20135366, 2013Google Scholar
  37. 37.
    M. Mizuno et al., The development of tire side force model considering the dependence of surface temperature of tire. Rev. Automot. Eng. 25, 227–230 (2004)Google Scholar
  38. 38.
    M. Mizuno et al., Development of tire force model for vehicle dynamics analysis including the effect of tire surface temperature. Trans. JSME 71(711), 3208–3215 (2005). (in Japanese)CrossRefGoogle Scholar
  39. 39.
    A. Higuchi, Tire model for vehicle dynamic analysis. Trans. JSAE 45(1), 101–107 (2014)Google Scholar
  40. 40.
    A.A. Goldstein, Finite element analysis of a Quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24(4), 278–293 (1996)CrossRefGoogle Scholar
  41. 41.
    O.A. Olatunbosun, O. Bolarinwa, FE simulation of the effect of tire design parameters on side forces and moments. Tire Sci. Technol. 32(3), 146–163 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol. 35(3), 183–208 (2007)CrossRefGoogle Scholar
  43. 43.
    M. Koishi et al., Tire cornering simulation using an explicit finite element analysis code. Tire Sci. Technol. 26(2), 109–119 (1998)CrossRefGoogle Scholar
  44. 44.
    E. Tonuk, Y.S. Unlusoy, Prediction of automobile tire cornering force characteristics by finite element modelling and analysis. Comput. Struct. 79, 1219–1232 (2001)CrossRefGoogle Scholar
  45. 45.
    K. Kabe, M. Koishi, Tire cornering simulation using the finite element analysis. J. Appl. Polym. Sci. 78, 1566–1572 (2000)CrossRefGoogle Scholar
  46. 46.
    M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000)CrossRefGoogle Scholar
  47. 47.
    K.V.N. Rao et al., Transient finite element analysis of tire dynamic behavior. Tire Sci. Technol. 31(2), 104–127 (2003)CrossRefGoogle Scholar
  48. 48.
    Y .Osawa, Tire analysis by using new hour-glass control (in Japanese), in LS-DYNA User’s Conference, Tokyo, 2005Google Scholar
  49. 49.
    H.H. Liu, Load and inflation effects on force and moment of passenger tires using explicit transient dynamics. Tire Sci. Technol. 35(1), 41–55 (2007)CrossRefGoogle Scholar
  50. 50.
    T. Fukushima et al., Vehicle cornering and braking behavior simulation using a finite element method, SAE-2005-01-0384, http://papers.sae.org/2005-01-0384/, 2005
  51. 51.
    K. G. Peterson et al., General Motors tire performance criteria (TPC) specification system, SAE Paper, No. 741103, 1974Google Scholar
  52. 52.
    M. Tsukijihara, Effect of tire performance on controllability and stability of vehicles. JSAE J. 36(3), 305–309 (1982)Google Scholar
  53. 53.
    S. Iida, K. Katada, Effect of tire dynamic properties on vehicle handling and stability. JSAE J. 38(3), 320–325 (1984)Google Scholar
  54. 54.
    M. Yamamoto, Effect of wheel alignment on handling and stability. JSAE J. 54(11), 10–15 (2000). (in Japanese)Google Scholar
  55. 55.
    T. Okano, K. Ishii, Effect of Tire Cornering Properties on Vehicle Handling and Stability. JSAE Paper, No. 9631182, 1996Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Science and Engineering, School of Advanced EngineeringKogakuin UniversityHachiojiJapan

Personalised recommendations