Unidirectional Fiber-Reinforced Rubber

  • Yukio NakajimaEmail author


The mystery why a tire, just one part of a vehicle, realizes many functions simultaneously can be explained by the fact that a tire has a composite structure made from composite material. Unidirectional fiber-reinforced rubber (UFRR) is the main composite material of a tire. The elastic and viscoelastic properties of UFRR are defined in principal directions, which are the direction of the fiber or cord and the direction perpendicular to the fiber or cord. Applying the rotation matrix to the properties of UFRR in the principal directions, the properties of UFRR can then be calculated in an arbitrary direction. Because UFRR has nonlinear properties with respect to the direction of the applied external force, the angle and width of UFRR used for a tire belt need to be carefully determined in tire design.


  1. 1.
    T. Hayashi (ed.), Composite Material Engineering (Nikkagiren, Tokyo, 1971) (in Japanese)Google Scholar
  2. 2.
    S.W. Tsai, Composite Design (Think Composites, Palmetto, 1986)Google Scholar
  3. 3.
    M. Miki et al., Composite Mechanics (Kyouritsu Shuppan, Tokyo, 1997) (in Japanese)Google Scholar
  4. 4.
    S.K. Clark (ed.), Mechanics of Pneumatic Tires (U.G. Government Printing Office, Washington, D.C., 1981)Google Scholar
  5. 5.
    J.D. Walter, Cord-rubber tire composites: theory and application. Rubber Chem. Technol. 51(3), 524–576 (1978)CrossRefGoogle Scholar
  6. 6.
    C.C. Chamis, Simplified composite micromechanics equations for hygral, thermal and mechanical properties. SAMPE Q. 15(3), 14–23 (1984)Google Scholar
  7. 7.
    R.F. Gibson, Principles of Composite Material Mechanics, 3rd edn. (CRC Press, Boca Raton, 2012)Google Scholar
  8. 8.
    T. Akasaka, K. Yoshida, Practical Energy Method (Youkendou, 2000) (in Japanese)Google Scholar
  9. 9.
    B.D. Agarwal, L.J. Broutman, Analysis and Performance of Fiber Composite (Wiley, New York, 1980)Google Scholar
  10. 10.
    R.M. Jones, Mechanics of Composite Materials, 2nd edn. (Taylor & Francis, Philadelphia, 1999)Google Scholar
  11. 11.
    S.K. Clark, Theory of the elastic net applied to cord-rubber composites. Rubber Chem. Technol. 56(2), 372–589 (1983)CrossRefGoogle Scholar
  12. 12.
    G. Tangora, Simplified calculations for multi-ply and rubber sheets as a combination of cord-rubber laminating, in Proceedings of International Conference, Moscow (1971)Google Scholar
  13. 13.
    T. Akasaka, M. Hirano, Approximate elastic constants of fiber reinforced rubber sheet and its composite laminate. Fukugo Zairyo 1(2), 70–76 (1972)Google Scholar
  14. 14.
    S.K. Clark, Theory of the elastic net applied to cord-rubber composites. Rubber Chem. Technol. 56(2), 372–589 (1983)CrossRefGoogle Scholar
  15. 15.
    K. Kabe, in Study on tire deformation based on structural mechanics. Ph.D. Thesis of Chuo University (1980) (in Japanese)Google Scholar
  16. 16.
    R. Chandra, et al., Micromechanical damping models for fiber-reinforced composites: a comparative study. Composites Part A 33, 787–796 (2002)Google Scholar
  17. 17.
    D.A. Saravanos, C.C. Chamis, Unified micromechanics of damping for unidirectional and off-axis fiber composites. J. Compos. Tech. Res. 12, 31–40 (1990)CrossRefGoogle Scholar
  18. 18.
    Y. Nakanishi et al., Estimation method of damping properties for woven fabric composites. Trans. JSME (C) 72(719), 2042–2047 (2006)CrossRefGoogle Scholar
  19. 19.
    Z. Hashin, Analysis of properties of fiber composites with anisotropic heterogeneous materials. J. Appl. Mech. 46, 543–550 (1979)CrossRefGoogle Scholar
  20. 20.
    S.W. Tsai, in Structural behavior of composite materials. NSA-CR-71 (1964)Google Scholar
  21. 21.
    J.C. Halpin, S.W. Tsai, in Effect of environmental factors on composite materials. AFML-TR-76-423 (1969)Google Scholar
  22. 22.
    J.D. Eshelby, The determination of the elastic field of an elliptical inclusion and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Y.H. Zhao, G.J. Weng, Effective elastic moduli of ribbon-reinforced composites. Trans. Am. Mech. Engr. 57, 158–167 (1990)Google Scholar
  24. 24.
    R.D. Adams, D.G.C. Bacon, Effect of fibre orientation and laminate geometry on the dynamic properties of CFRP. J. Comp. Mater. 7, 402–428 (1973)CrossRefGoogle Scholar
  25. 25.
    D.X. Lin et al., Prediction and measurement of vibrational damping parameters of carbon and glass fibre-reinforced plastic plates. J. Compos. Mater. 18, 132–152 (1984)CrossRefGoogle Scholar
  26. 26.
    M.R. Maheri, R.D. Adams, Finite element Prediction of modal response of damped layered composite panels. Compos. Sci. and Technol. 55, 13–23 (1995)CrossRefGoogle Scholar
  27. 27.
    K. Terada et al., A method of viscoelastic two scale analyses for FRP. Trans. JSME (A) 75(76), 1674–1687 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Kobayashi et al., Damping vibration analysis of composite materials using mode superposition and homogenization method. J. Jpn. Soc. Compos. Mater. 41(1), 9–18 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Aboudi, Mechanics of Composite Materials. Studies in Applied Mechanics 29 (Elsevier, Amsterdam, 1991)Google Scholar
  30. 30.
    F. Tabaddor et al., Visocoelastic loss characteristics of cord-rubber composites. Tire Sci. Technol. 14(2), 75–101 (1986)CrossRefGoogle Scholar
  31. 31.
    K. Fujimoto et al., Study on complex modulus of FRR. J. Compos. Mater. 12(4), 163–170 (1986). (in Japanese)Google Scholar
  32. 32.
    M. Kaliske, H. Rothert, Damping characteristics of unidirectional fibre reinforced polymer composites. Compos. Eng. 5(5), 551–567 (1995)CrossRefGoogle Scholar
  33. 33.
    M. Kaliske, A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Meth. Appl. Mech. Eng. 185, 225–243 (2000)CrossRefGoogle Scholar
  34. 34.
    M. Koishi et al., Homogenization method for analysis of dynamic viscoelastic properties of composite materials. Trans. JSME (A) 62(602), 2270–2275 (1996)CrossRefGoogle Scholar
  35. 35.
    Z. Shida et al., A rolling resistance simulation of tires using static finite element analysis. Tire Sci. Technol. 27(2), 84–105 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Y. Ishikawa, Friction of tire—friction on ice and material characteristics. Nippon Gomu Kyokaishi 70(4), 193–203 (1997)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Doi, Trend of recent technologies of tire. Nippon Gomu Kyokaishi 71(9), 588–594 (1998)CrossRefGoogle Scholar
  38. 38.
    T. Hase, K. Yamaguchi, Short fiber reinforcement of TPE. Nippon Gomu Kyokaishi 69(9), 615–623 (1996)CrossRefGoogle Scholar
  39. 39.
    N. Wada, et al., Effect of filled fibers and their orientations on the wear of short fiber reinforced rubber composites. Nippon Gomu Kyokaishi 66(8), 572–584 (1993)Google Scholar
  40. 40.
    J.C. Halpin, Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mater. 3, 732–734 (1969)CrossRefGoogle Scholar
  41. 41.
    T. Nishi, Structure and material properties of rubber composites. Nippon Gomu Kyokaishi 57(7), 417–427 (1984)CrossRefGoogle Scholar
  42. 42.
    S. Abrate, The mechanics of short-fiber-reinforced composites: a review. Rubber Chem. Technlol. 59, 384–404 (1986)CrossRefGoogle Scholar
  43. 43.
    M. Ashida, Reinforced fiber (short fiber). Nippon Gomu Kyokaishi 63(11), 694–701 (1990)CrossRefGoogle Scholar
  44. 44.
    M. Ashida et al., Effect of fiber length on the mechanical and dynamical properties of PET-CR composite. Nippon Gomu Kyokaishi 60(3), 158–164 (1987)CrossRefGoogle Scholar
  45. 45.
    N. Yoshida et al., Effect of damping on earthquake response of ground and its accuracy. J. Jpn. Assoc. Earthquake Eng. 6(4), 55–73 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Science and Engineering, School of Advanced EngineeringKogakuin UniversityHachiojiJapan

Personalised recommendations