Advertisement

Feedback Control

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

The open-loop control techniques, discussed in Chap.  6, are the most widely applied methods for controlling crane systems due to their easy and cost-effective application (i.e., feedback sensors are not required). However, they have serious limitations in dealing with nonlinearities, modeling uncertainties, and external disturbances. Therefore, such systems are feasible for only simple crane operations that can be carried out under controlled environments, for example, within an enclosure (such as a factory), where external disturbances such as wind cannot have significant impacts on the crane system. However, crane systems are also used for field or offshore operations and are exposed to external disturbances such as wind, sea currents, and waves. Furthermore, the repetitive nature of crane operations causes degradation and wear within the constituent parts of the support mechanism, which changes their friction-related properties, consequently resulting in modeling uncertainties. Therefore, to achieve the required performance of the crane in a challenging environment, either hybrid open- and closed-loop or solely feedback control strategies are pursued. First, we will discuss the feedback control strategies applied to crane systems, which mostly utilize the feedback of the sway angle of the payload and the position/velocity of the support mechanism (i.e., the trolley, bridge, boom, etc.) in generating control inputs (either force or torque) to the support mechanisms themselves in achieving both the sway suppression of the payload and the position control of the entire crane.

References

  1. Alli H, Singh T (1999) Passive control of overhead cranes. J Vib Control 5(3):443–459CrossRefGoogle Scholar
  2. Al-mousa AA, Nayfeh AH, Kachroo P (2003) Control of rotary cranes using fuzzy logic. Shock Vib 10(2):81–95CrossRefGoogle Scholar
  3. Almutairi NB, Zribi M (2009) Sliding mode control of a three-dimensional overhead crane. J Vib Control 15(11):1679–1730MathSciNetzbMATHCrossRefGoogle Scholar
  4. Almutairi NB, Zribi M (2016) Fuzzy controllers for a gantry crane system with experimental verifications. Math Probl Eng.  https://doi.org/10.1155/2016/1965923MathSciNetzbMATHCrossRefGoogle Scholar
  5. Azeloglu CO, Sagirli A, Edincliler A (2016) Vibration mitigation of nonlinear crane system against earthquake excitations with the self-tuning fuzzy logic PID controller. Nonlinear Dyn 84(4):1915–1928CrossRefGoogle Scholar
  6. Bartolini G, Pisano A, Usai E (2002) Second-order sliding-mode control of container cranes. Automatica 38(10):1783–1790MathSciNetzbMATHCrossRefGoogle Scholar
  7. Benhidjeb A, Gissinger GL (1995) Fuzzy control of an overhead crane performance comparison with classic control. Control Eng Practice 3(12):1687–1696CrossRefGoogle Scholar
  8. Bock M, Kugi A (2014) Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans Control Syst Technol 22(4):1461–1473CrossRefGoogle Scholar
  9. Chang CY (2007) Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans Ind Inform 3(2):164–172CrossRefGoogle Scholar
  10. Chang CY, Chiang KH (2008) Fuzzy projection control law and its application to the overhead crane. Mechatronics 18(10):607–615CrossRefGoogle Scholar
  11. Chang CY, Chiang KH (2009) Intelligent fuzzy accelerated method for the nonlinear 3-D crane control. Expert Syst Appl 36(3):5750–5752CrossRefGoogle Scholar
  12. Chang YC, Shaw JS (2012) Adaptive hierarchical sliding control of overhead crane system with haar wavelet function estimator. J Chinese Soc Mech Eng 33(3):193–202Google Scholar
  13. Chang CY, Hsu KC, Chiang KH et al (2008) Modified fuzzy variable structure control method to the crane system with control deadzone problem. J Vib Control 14(7):953–969zbMATHCrossRefGoogle Scholar
  14. Chen WT, Saif M (2008) Output feedback controller design for a class of mimo nonlinear systems using high-order sliding-mode differentiators with application to a laboratory 3-D crane. IEEE Trans Ind Electron 55(11):3985–3997CrossRefGoogle Scholar
  15. Cheng CC, Chen CY (1996) Controller design for an overhead crane system with uncertainty. Control Eng Practice 4(5):645–653CrossRefGoogle Scholar
  16. Cho SK, Lee HH (2002) A fuzzy-logic antiswing controller for three-dimensional overhead cranes. ISA Trans 41(2):235–243CrossRefGoogle Scholar
  17. Cho H, Lee J, Lee Y et al (2008) Lyapunov theory based robust control of complicated nonlinear mechanical systems with uncertainty. J Mech Sci Technol 22(11):2142–2150CrossRefGoogle Scholar
  18. Chwa D (2009) Nonlinear tracking control of 3-D overhead cranes against the initial swing angle and the variation of payload weight. IEEE Trans Control Syst Technol 17(4):876–883CrossRefGoogle Scholar
  19. d’Andra-Novel B, Coron JM (2000) Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36(4):587–593MathSciNetzbMATHCrossRefGoogle Scholar
  20. Erneux T, Kalmar-Nagy T (2007) Nonlinear stability of a delayed feedback controlled container crane. J Vib Control 13(5):603–616zbMATHCrossRefGoogle Scholar
  21. Hayajneh MT, Radaideh SM, Smadi IA (2006) Fuzzy logic controller for overhead cranes. Eng Comput 23(1–2):84–98zbMATHCrossRefGoogle Scholar
  22. He W, Ge SS, How BE et al (2011) Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4):722–732MathSciNetzbMATHCrossRefGoogle Scholar
  23. Hong K-S, Park BJ, Lee MH (2000) Two-stage control for container cranes. JSME Int J Ser C-Mech Syst Mach Elem Manuf 43(2):273–282CrossRefGoogle Scholar
  24. Hong K-S, Kim CW, Hong K-T (2004) Boundary control of an axially moving belt system in a thin-metal production line. Int J Control Autom Syst 2(1):55–67Google Scholar
  25. Huey JR, Sorensen KL, Singhose W (2008) Useful applications of closed-loop signal shaping controllers. Control Eng Practice 16(7):836–846CrossRefGoogle Scholar
  26. Jolevski D, Bego O (2015) Model predictive control of gantry/bridge crane with anti-sway algorithm. J Mech Sci Technol 29(2):827–834CrossRefGoogle Scholar
  27. Karkoub MA, Zribi M (2001) Robust control schemes for an overhead crane. J Vib Control 7(3):395–416zbMATHCrossRefGoogle Scholar
  28. Kim CS, Hong K-S (2009) Boundary control of container cranes from the perspective of controlling an axially moving string system. Int J Control Autom Syst 7(3):437–445CrossRefGoogle Scholar
  29. Kim C-W, Hong K-S, Park H (2005a) Boundary control of an axially moving string: Actuator dynamics included. J Mech Sci Technol 1(1):40–50CrossRefGoogle Scholar
  30. Kim C-W, Park H, Hong K-S (2005b) Boundary control of axially moving continua: Application to a zinc galvanizing line. Int J Control Autom Syst 3(4):601–611Google Scholar
  31. Lee HH (1998) Modeling and control of a three-dimensional overhead crane. J Dyn Syst Meas Control-Trans ASME 120(4):471–476CrossRefGoogle Scholar
  32. Lee HH (2003) A new approach for the anti-swing control of overhead cranes with high-speed load hoisting. Int J Control 76(15):1493–1499MathSciNetzbMATHCrossRefGoogle Scholar
  33. Lee HH (2004) A new design approach for the anti-swing trajectory control of overhead cranes with high-speed hoisting. Int J Control 77(10):931–940MathSciNetzbMATHCrossRefGoogle Scholar
  34. Lee HH, Liang Y, Segura D (2006) A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. J Dyn Syst Meas Control-Trans ASME 128(4):842–845CrossRefGoogle Scholar
  35. Li XO, Yu W (2012) Anti-swing control for an overhead crane with fuzzy compensation. Intell Autom Soft Comput 18(1):1–11MathSciNetCrossRefGoogle Scholar
  36. Liang YC, Koh KK (1997) Concise anti-swing approach for fuzzy crane control. Electron Lett 33(2):167–168CrossRefGoogle Scholar
  37. Liu DT, Yi JQ, Zhao DB et al (2005) Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics 15(5):505–522CrossRefGoogle Scholar
  38. Mahfouf M, Kee CH, Abbod MF et al (2000) Fuzzy logic-based anti-sway control design for overhead cranes. Neural Comput Appl 9(1):38–43CrossRefGoogle Scholar
  39. Masoud ZN (2007) Oscillation control of quay-side container cranes using cable-length manipulation. J Dyn Syst Meas Control-Trans ASME 129(2):224–228CrossRefGoogle Scholar
  40. Masoud ZN, Nayfeh AH, Al-Mousa A (2003) Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. J Vib Control 9(1–2):257–277zbMATHCrossRefGoogle Scholar
  41. Masoud ZN, Daqaq MF, Nayfeh NA (2004a) Pendulation reduction on small ship-mounted telescopic cranes. J Vib Control 10(8):1167–1179Google Scholar
  42. Masoud ZN, Nayfeh AH, Mook DT (2004b) Cargo pendulation reduction of ship-mounted cranes. Nonlinear Dyn 35(3):299–311zbMATHCrossRefGoogle Scholar
  43. Moustafa KAF, Ismail MIS, Gad EH et al (2006) Fuzzy control of flexible cable overhead cranes with load hoisting. Trans Inst Meas Control 28(4):371–386CrossRefGoogle Scholar
  44. Nayfeh NA, Baumann WT (2008) Nonlinear analysis of time-delay position feedback control of container cranes. Nonlinear Dyn 53(1–2):75–88zbMATHCrossRefGoogle Scholar
  45. Neupert J, Arnold E, Schneider K (2010) Tracking and anti-sway control for boom cranes. Control Eng Practice 18(1):31–44CrossRefGoogle Scholar
  46. Ngo QH, Hong K-S (2012) Adaptive sliding mode control of container cranes. IET Contr Theory Appl 6(5):662–668MathSciNetCrossRefGoogle Scholar
  47. Ngo QH, Hong K-S, Jung IH (2009) Adaptive control of an axially moving system. J Mech Sci Technol 23(11):3071–3078CrossRefGoogle Scholar
  48. Ngo QH, Nguyen NP, Nguyen CN et al (2015) Fuzzy sliding mode control of container cranes. Int J Control Autom Syst 13(2):419–425CrossRefGoogle Scholar
  49. Nguyen HT (1994) State-variable feedback controller for an overhead crane. J Elect Electronics Eng 14(12):75–84Google Scholar
  50. Nguyen QC, Hong K-S (2012a) Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J Sound Vibr 331(13):3006–3019CrossRefGoogle Scholar
  51. Nguyen QC, Hong K-S (2012b) Transverse vibration control of axially moving membranes by regulation of axial velocity. IEEE Trans Control Syst Technol 20(4):1124–1131CrossRefGoogle Scholar
  52. Omar F, Karray F, Basir O et al (2004) Autonomous overhead crane system using a fuzzy logic controller. J Vib Control 10(9):1255–1270zbMATHGoogle Scholar
  53. Park H, Le NT (2012) Modeling and controlling the mobile harbour crane system with virtual prototyping technology. Int J Control Autom Syst 10(6):1204–1214CrossRefGoogle Scholar
  54. Park H, Chwa D, Hong K-S (2007) A feedback linearization control of container cranes: varying rope length. Int J Control Autom Syst 5(4):379–387Google Scholar
  55. Park MS, Chwa D, Hong SK (2008) Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans Ind Electron 55(11):3972–3984CrossRefGoogle Scholar
  56. Piazzi A, Visioli A (2002) Optimal dynamic-inversion-based control of an overhead crane. IEE Proc-Control Theory Appl 149(5):405–411CrossRefGoogle Scholar
  57. Qian DW, Tong SW, Lee S (2016) Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom Constr 65:133–143CrossRefGoogle Scholar
  58. Rahn CD, Zhang FM, Joshi S et al (1999) Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J Dyn Syst Meas Control-Trans ASME 121(3):563–566CrossRefGoogle Scholar
  59. Sakawa Y, Nakazumi A (1985) Modeling and control of a rotary crane. J Dyn Syst Meas Control-Trans ASME 107(3):200–206zbMATHCrossRefGoogle Scholar
  60. Sato K, Sakawa Y (1988) Modelling and control of a flexible rotary crane. Int J Control 48(5):2085–2105MathSciNetzbMATHCrossRefGoogle Scholar
  61. Sawodny O, Aschemann H, Lahres S (2002) An automated gantry crane as a large workspace robot. Control Eng Practice 10(12):1323–1338CrossRefGoogle Scholar
  62. Shah UH, Hong K-S (2018) Active vibration control of a flexible rod moving in water: application to nuclear refueling machines. Automatica 93:231–243MathSciNetzbMATHCrossRefGoogle Scholar
  63. Slotine JJE, Li W (1991) Applied Nonlinear Control. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  64. Smoczek J (2014) Fuzzy crane control with sensorless payload deflection feedback for vibration reduction. Mech Syst Signal Proc 46(1):70–81CrossRefGoogle Scholar
  65. Smoczek J (2015) Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system. Mech Syst Signal Proc 62–63:324–340CrossRefGoogle Scholar
  66. Smoczek J, Szpytko J (2014) Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system. Eng Appl Artif Intell 28:190–200CrossRefGoogle Scholar
  67. Solihin MI, Wahyudi, Legowo A (2010) Fuzzy-tuned PID anti-swing control of automatic gantry crane. J Vib Control 16(1):127–145zbMATHCrossRefGoogle Scholar
  68. Sucevic M, Novakovic B, Crnekovic M (2004) Control of a load hoisting and transfering using analytic fuzzy logic controller. Strojarstvo 46(4–6):125–136Google Scholar
  69. Sun N, Fang YC, Chen H (2015) A new antiswing control method for underactuated cranes with unmodeled uncertainties: theoretical design and hardware experiments. IEEE Trans Ind Electron 62(1):453–465CrossRefGoogle Scholar
  70. Trabia MB, Renno JM, Moustafa KAF (2008) Generalized design of an anti-swing fuzzy logic controller for an overhead crane with hoist. J Vib Control 14(3):319–346zbMATHCrossRefGoogle Scholar
  71. Tuan LA, Lee SG (2013) Sliding mode controls of double-pendulum crane systems. J Mech Sci Technol 27(6):1863–1873CrossRefGoogle Scholar
  72. Van den Broeck L, Diehl M, Swevers J (2011) A model predictive control approach for time optimal point-to-point motion control. Mechatronics 21(7):1203–1212CrossRefGoogle Scholar
  73. Vazquez C, Collado J, Fridman L (2014) Super twisting control of a parametrically excited overhead crane. J Frankl Inst-Eng Appl Math 351(4):2283–2298MathSciNetzbMATHCrossRefGoogle Scholar
  74. Vazquez C, Fridman L, Collado J et al (2015) Second-order sliding mode control of a perturbed-crane. J Dyn Syst Meas Control-Trans ASME 137(8):081010CrossRefGoogle Scholar
  75. Wang W, Yi J, Zhao D et al (2004) Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc-Control Theory Appl 151(6):683–690CrossRefGoogle Scholar
  76. Wang W, Liu XD, Yi JQ (2007) Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems. IET Control Theory Appl 1(1):163–172MathSciNetCrossRefGoogle Scholar
  77. Wu XQ, He XX (2016) Partial feedback linearization control for 3-D underactuated overhead crane systems. ISA Trans 65:361–370CrossRefGoogle Scholar
  78. Xi Z, Hesketh T (2010) Discrete time integral sliding mode control for overhead crane with uncertainties. IET Contr Theory Appl 4(10):2071–2081MathSciNetCrossRefGoogle Scholar
  79. Yakut O (2014) Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Comput Appl 24(6):1369–1379CrossRefGoogle Scholar
  80. Yang K-J, Hong K-S, Matsuno F (2004a) Boundary control of an axially moving steel strip under a spatiotemporally varying tension. JSME Int J Ser C-Mech Syst Mach Elem Manuf 47(2):665–674CrossRefGoogle Scholar
  81. Yang K-J, Hong K-S, Matsuno F (2004b) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vibr 273(4–5):1007–1029MathSciNetzbMATHCrossRefGoogle Scholar
  82. Yang K-J, Hong K-S, Matsuno F (2005a) Boundary control of a translating tensioned beam with varying speed. IEEE-ASME Trans Mechatron 10(5):594–597CrossRefGoogle Scholar
  83. Yang K-J, Hong K-S, Matsuno F (2005b) Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans Autom Control 50(12):2053–2058MathSciNetzbMATHCrossRefGoogle Scholar
  84. Yoshimoto T, Sakawa Y (1989) Modelling and control of a rotary crane with a flexible joint. Optim Control Appl Methods 10(1):21–38MathSciNetzbMATHCrossRefGoogle Scholar
  85. Yu W, Moreno-Armendariz MA, Rodriguez FO (2011) Stable adaptive compensation with fuzzy CMAC for an overhead crane. Inf Sci 181(21):4895–4907MathSciNetzbMATHCrossRefGoogle Scholar
  86. Zdesar A, Cerman O, Dovzan D et al (2013) Fuzzy control of a helio-crane. J Intell Robot Syst 72(3–4):497–515CrossRefGoogle Scholar
  87. Zhang HY, Wang J, Lu GD (2014a) Hierarchical fuzzy-tuned multiobjective optimization control for gantry cranes. Proc Inst Mech Eng Part C-J Mech Eng Sci 228(7):1119–1131CrossRefGoogle Scholar
  88. Zhang HY, Wang J, Lu GD (2014b) Self-organizing fuzzy optimal control for under-actuated systems. Proc Inst Mech Eng Part I-J Syst Control Eng 228(8):578–590CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations