Advertisement

Open-Loop Control

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter discusses the open-loop control techniques applied to crane systems.

References

  1. Alghanim KA, Alhazza KA, Masoud ZN (2015) Discrete-time command profile for simultaneous travel and hoist maneuvers of overhead cranes. J Sound Vibr 345:47–57CrossRefGoogle Scholar
  2. Alhazza K, Masoud Z (2013) A novel wave-form command shaper for overhead cranes. J Eng Res 1(3):181–209Google Scholar
  3. Auernig JW, Troger H (1987) Time optimal control of overhead cranes with hoisting of the load. Automatica 23(4):437–447zbMATHCrossRefGoogle Scholar
  4. Blackburn D, Lawrence J, Danielson J et al (2010a) Radial-motion assisted command shapers for nonlinear tower crane rotational slewing. Control Eng Pract 18(5):523–531CrossRefGoogle Scholar
  5. Blackburn D, Singhose W, Kitchen J et al (2010b) Command shaping for nonlinear crane dynamics. J Vib Control 16(4):1–25zbMATHCrossRefGoogle Scholar
  6. Bryson AE, Ho YC (1968) Applied optimal control. Blaisdell, MassachusettsGoogle Scholar
  7. Chen H, Fang YC, Sun N (2016) Optimal trajectory planning and tracking control method for overhead cranes. IET Contr Theory Appl 10(6):692–699MathSciNetCrossRefGoogle Scholar
  8. Da Cruz JJ, Leonardi F (2013) Minimum-time anti-swing motion planning of cranes using linear programming. Optim Control Appl Methods 34(2):191–201MathSciNetzbMATHCrossRefGoogle Scholar
  9. Desantis RM, Krau S (1994) Bang bang motion control of a Cartesian crane. Robotica 12:449–454CrossRefGoogle Scholar
  10. Garrido S, Abderrahim M, Gimenez A et al (2008) Anti-swinging input shaping control of an automatic construction crane. IEEE Trans Autom Sci Eng 5(3):549–557CrossRefGoogle Scholar
  11. Glossiotis G, Antoniadis I (2003) Payload sway suppression in rotary cranes by digital filtering of the commanded inputs. Proc Inst Mech Eng Part K: J Multi-Body Dyn 217(2):99–109Google Scholar
  12. Glossiotis G, Antoniadis I (2007) Digital filter based motion command preconditioning of time varying suspended loads in boom cranes for sway suppression. J Vib Control 13(5):617–656zbMATHCrossRefGoogle Scholar
  13. Hamalainen JJ, Marttinen A, Baharova L et al (1995) Optimal path planning for a trolley crane—fast and smooth transfer of load. IEE Proc-Control Theory Appl 142(1):51–57zbMATHCrossRefGoogle Scholar
  14. Hong KT, Huh CD, Hong K-S (2003) Command shaping control for limiting the transient sway angle of crane systems. Int J Control Autom Syst 1(1):43–53Google Scholar
  15. Hong K-S, Sohn S-C, Lee M-H (1997a) Sway control of a container crane (Part I): modeling, control strategy, error feedback control via reference velocity profiles. J Control Autom Syst 3(1):23–31Google Scholar
  16. Hong K-S, Sohn S-C, Lee M-H (1997b) Sway control of a container crane (Part II): regulation of the pendulum sway through patternizing trolley moving velocity. J Control Autom Syst 3(2):132–138Google Scholar
  17. Jaddu H, Vlach M (2002) Successive approximation method for nonlinear optimal control problems with application to a container crane problem. Optim Control Appl Methods 23(5):275–288zbMATHCrossRefGoogle Scholar
  18. Karihaloo BL, Parbery RD (1982) Optimal control of a dynamical system representing a gantry crane. J Optim Theory Appl 36(3):409–417MathSciNetzbMATHCrossRefGoogle Scholar
  19. Khalid A, Huey J, Singhose W et al (2006) Human operator performance testing using an input-shaped bridge crane. J Dyn Syst Meas Contr Trans ASME 128(4):835–841CrossRefGoogle Scholar
  20. Lawrence J, Singhose W (2010) Command shaping slewing motions for tower cranes. J Vib Acoust Trans ASME 132(1):011002CrossRefGoogle Scholar
  21. Maghsoudi MJ, Mohamed Z, Husain AR et al (2016) An optimal performance control scheme for a 3D crane. Mech Syst Signal Proc 66–67:756–768CrossRefGoogle Scholar
  22. Maghsoudi MJ, Mohamed Z, Sudin S et al (2017) An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech Syst Signal Proc 92:364–378CrossRefGoogle Scholar
  23. Maleki E, Singhose W (2011) Dynamics and control of a small-scale boom crane. J Comput Nonlinear Dyn 6(3):031015CrossRefGoogle Scholar
  24. Manning R, Clement J, Kim D et al (2010) Dynamics and control of bridge cranes transporting distributed-mass payloads. J Dyn Syst Meas Contr Trans ASME 132(1):014505CrossRefGoogle Scholar
  25. Morison JR, O’Brien MP, Johnson JW et al (1950) The force exerted by surface waves on piles. Pet Trans 189:149–157Google Scholar
  26. Moustafa KAF, Ebeid AM (1988) Nonlinear modeling and control of overhead crane load sway. J Dyn Syst Meas Contr Trans ASME 110(3):266–271CrossRefGoogle Scholar
  27. Sakawa Y, Shindo Y (1982) Optimal control of container cranes. Automatica 18(3):257–266zbMATHCrossRefGoogle Scholar
  28. Shah UH, Hong K-S, Choi S-H (2017) Open-loop vibration control of an underwater system: application to refueling machine. IEEE-ASME Trans Mechatron 22(4):622–1632CrossRefGoogle Scholar
  29. Singhose W (2009) Command shaping for flexible systems: a review of the first 50 years. Int J Precis Eng Manuf 10(4):153–168CrossRefGoogle Scholar
  30. Singhose W, Crain E, Seering W (1997) Convolved and simultaneous two-mode-input shapers. IEE Proc-Control Theory Appl 144(6):515–520zbMATHCrossRefGoogle Scholar
  31. Singhose W, Kim D, Kenison M (2008) Input shaping control of double-pendulum bridge crane oscillations. J Dyn Syst Meas Contr Trans ASME 130(3):034504CrossRefGoogle Scholar
  32. Singhose W, Porter L, Kenison M et al (2000) Effects of hoisting on the input shaping control of gantry cranes. Contr Eng Pract 8(10):1159–1165CrossRefGoogle Scholar
  33. Smith OJM (1957) Posicast control of damped oscillatory systems. Proc IRE 45(9):133–139CrossRefGoogle Scholar
  34. Spruogis B, Jakstas A, Gican V et al (2015) Overhead crane anti-swing system based on the Pontryagin’s maximum principle. Transport 30(1):61–68CrossRefGoogle Scholar
  35. Sung YG, Singhose WE (2009) Robustness analysis of input shaping commands for two-mode flexible systems. IET Contr Theory Appl 3(6):722–730MathSciNetCrossRefGoogle Scholar
  36. Teo CL, Ong CJ, Xu M (1998) Pulse input sequences for residual vibration reduction. J Sound Vibr 211(2):157–177CrossRefGoogle Scholar
  37. Terashima K, Shen Y, Yano K (2007) Modeling and optimal control of a rotary crane using the straight transfer transformation method. Contr Eng Pract 15(9):1179–1192CrossRefGoogle Scholar
  38. Treleaven K, Pavone M, Frazzoli E (2013) Asymptotically optimal algorithms for one-to-one pickup and delivery problems with applications to transportation systems. IEEE Trans Autom Contr 58(9):2261–2276MathSciNetzbMATHCrossRefGoogle Scholar
  39. Uchiyama N, Ouyang H, Sano S (2013) Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion. Mechatronics 23(8):1223–1236CrossRefGoogle Scholar
  40. Vaughan J, Yano A, Singhose W (2008) Comparison of robust input shapers. J Sound Vibr 315(4–5):797–815CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations