Distributed Parameter Models

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Part of the Advances in Industrial Control book series (AIC)


This chapter discusses modeling of crane systems as distributed parameter systems.


  1. Alli H, Singh T (1999) Passive control of overhead cranes. J Vib Control 5(3):443–459CrossRefGoogle Scholar
  2. d’Andrea-Novel B, Boustany F, Conrad F et al (1994) Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. Math Control Signal Syst 7(1):1–22Google Scholar
  3. Hannan MA, Bai W (2016) Analysis of nonlinear dynamics of fully submerged payload hanging from offshore crane vessel. Ocean Eng 128:132–146CrossRefGoogle Scholar
  4. He W, Zhang S, Ge SS (2014) Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans Ind Electron 61(8):4126–4133CrossRefGoogle Scholar
  5. How BVE, Ge SS, Choo YS (2009) Active control of flexible marine risers. J Sound Vibr 320(4–5):758–776CrossRefGoogle Scholar
  6. How BVE, Ge SS, Choo YS (2011) Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations. IEEE Trans Control Syst Technol 19(1):208–220CrossRefGoogle Scholar
  7. Kim CS, Hong K-S (2009) Boundary control of container cranes from the perspective of controlling an axially moving string system. Int J Control Autom Syst 7(3):437–445CrossRefGoogle Scholar
  8. Marzouk O, Nayfeh AH, Akhtar I et al (2007) Modeling steady-state and transient forces on a cylinder. J Vib Control 13(7):1065–1091CrossRefGoogle Scholar
  9. Morison JR, O’Brien MP, Johnson JW et al (1950) The force exerted by surface waves on piles. Pet Trans 189:149–157Google Scholar
  10. Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339CrossRefGoogle Scholar
  11. O’Connor WJ (2003) A gantry crane problem solved. J Dyn Syst Meas Control-Trans ASME 125(4):569–576CrossRefGoogle Scholar
  12. Sano H (2008) Boundary stabilization of hyperbolic systems related to overhead cranes. IMA J Math Control Inf 25(3):353–366MathSciNetCrossRefGoogle Scholar
  13. Shah UH, Hong K-S (2018) Active vibration control of a flexible rod moving in water: application to nuclear refueling machines. Automatica 93:231–243MathSciNetCrossRefGoogle Scholar
  14. Shah UH, Hong K-S, Choi S-H (2017) Open-loop vibration control of an underwater system: application to refueling machine. IEEE-ASME Trans Mechatron 22(4):622–1632CrossRefGoogle Scholar
  15. Williamson CHK, Govardhan R (2004) Vortex-induced vibrations. Annu Rev Fluid Mech 36:413–455MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations