Lumped Mass Models of Mobile Cranes

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Part of the Advances in Industrial Control book series (AIC)


In the previous chapters, we have discussed the crane systems with a fixed base, which are used at construction sites (e.g., tower cranes), manufacturing/power plants (e.g., overhead cranes), ship-building factories (e.g., gantry cranes), and seaports (e.g., container cranes), for handling heavy loads.


  1. Abdel-Rahman EM, Nayfeh AH, Masoud ZN (2003) Dynamics and control of cranes: a review. J Vib Control 9(7):863–908zbMATHGoogle Scholar
  2. Chin C, Nayfeh AH, Abdel-Rahman E (2001a) Nonlinear dynamics of a boom crane. J Vib Control 7(2):199–220CrossRefGoogle Scholar
  3. Chin CM, Nayfeh AH, Mook DT (2001b) Dynamics and control of ship-mounted cranes. J Vib Control 7(6):891–904CrossRefGoogle Scholar
  4. Ghigliazza RM, Holmes P (2002) On the dynamics of cranes, or spherical pendula with moving supports. Int J Non-Linear Mech 37(7):1211–1221CrossRefGoogle Scholar
  5. Hong K-S, Ngo QH (2012) Dynamics of the container crane on a mobile harbor. Ocean Eng 53:16–24CrossRefGoogle Scholar
  6. Klosinski J (2005) Swing-free stop control of the slewing motion of a mobile crane. Control Eng Practice 13(4):451–460CrossRefGoogle Scholar
  7. Kuchler S, Mahl T, Neupert J et al (2011) Active control for an offshore crane using prediction of the vessel’s motion. IEEE-ASME Trans Mechatron 16(2):297–309CrossRefGoogle Scholar
  8. Maczynski A, Wojciech S (2003) Dynamics of a mobile crane and optimisation of the slewing motion of its upper structure. Nonlinear Dyn 32(3):259–290CrossRefGoogle Scholar
  9. Miles J (1984) Resonant motion of a spherical pendulum. Phys D 11(3):309–323MathSciNetCrossRefGoogle Scholar
  10. Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339CrossRefGoogle Scholar
  11. Perig AV, Stadnik AN, Deriglazov AI (2014a) Spherical pendulum small oscillations for slewing crane motion. Sci Worl J. Scholar
  12. Perig AV, Stadnik AN, Deriglazov AI et al (2014b) 3 DOF spherical pendulum oscillations with a uniform slewing pivot center and a small angle assumption. Shock Vib.
  13. Posiadala B (1997) Influence of crane support system on motion of the lifted load. Mech Mach Theory 32(1):9–20CrossRefGoogle Scholar
  14. Posiadala B, Skalmierski B, Tomski L (1990) Motion of the lifted load brought by a kinematic forcing of the crane telescopic boom. Mech Mach Theory 25(5):547–556CrossRefGoogle Scholar
  15. Schellin TE, Jiang T, Sharma SD (1991) Crane ship response to wave groups. J Offshore Mech Arct Eng Trans ASME 113:211–218CrossRefGoogle Scholar
  16. Witz JA (1995) Parametric excitation of crane loads in moderate sea states. Ocean Eng 22(4):411–420CrossRefGoogle Scholar
  17. Yurchenko D, Alevras P (2014) Stability, control and reliability of a ship crane payload motion. Probab Eng Mech 38:173–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations