Advertisement

Introduction

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

Cranes are material handling machines, which are used in different industries (i.e., construction, manufacturing, shipbuilding, and freight handling) for transporting heavy materials that humans cannot handle. Cranes have the capability of moving the load vertically (i.e., lifting up and lowering) and also in a horizontal plane, either along a straight or a curved path. In order to meet the requirements of handling a specific load in various industries, cranes with different operating mechanisms are utilized. For lifting a load, a hoisting mechanism is used, which consists of either a single or a set of multiple ropes suspended from the support mechanism of the crane. A gripper or a hook at the bottom free end of the rope(s) grasps the load, while an actuator/motor located at the top rope support mechanism hoists up and down the load by using a system of sheaves.

References

  1. Abdel-Rahman EM, Nayfeh AH (2002) Pendulation reduction in boom cranes using cable length manipulation. Nonlinear Dyn 27(3):255–269zbMATHCrossRefGoogle Scholar
  2. Abdel-Rahman EM, Nayfeh AH (2003) Two-dimensional control for ship-mounted cranes: a feasibility study. J Vib Control 9(12):1327–1342zbMATHCrossRefGoogle Scholar
  3. Abdel-Rahman EM, Nayfeh AH, Masoud ZN (2003) Dynamics and control of cranes: a review. J Vib Control 9(7):863–908zbMATHGoogle Scholar
  4. Araya H, Kakuzen M, Kinugawa H et al (2004) Level luffing control system for crawler cranes. Autom Constr 13(5):689–697CrossRefGoogle Scholar
  5. Arena A, Casalotti A, Lacarbonara W et al (2015) Dynamics of container cranes: three-dimensional modeling, full-scale experiments, and identification. Int J Mech Sci 93:8–21CrossRefGoogle Scholar
  6. Augustin D, Maurer H (2001) Second order sufficient conditions and sensitivity analysis for the optimal control of a container crane under state constraints. Optimization 49(4):351–368MathSciNetzbMATHCrossRefGoogle Scholar
  7. Azeloglu CO, Sagirli A (2015) Active vibration control of container cranes against earthquake by the use of LMI based mixed H2/H state-feedback controller. Shock Vib. http://dx.doi.org/10.1155/2015/589289
  8. Azeloglu CO, Sagirli A, Edincliler A (2013) Mathematical modelling of the container cranes under seismic loading and proving by shake table. Nonlinear Dyn 73(1–2):143–154CrossRefGoogle Scholar
  9. Bak MK, Hansen MR (2013a) Analysis of offshore knuckle boom crane—part one: modeling and parameter identification. Model Identif Control 34(4):157–174CrossRefGoogle Scholar
  10. Bak MK, Hansen MR (2013b) Analysis of offshore knuckle boom crane—part two: motion control. Model Identif Control 34(4):175–181CrossRefGoogle Scholar
  11. Bartolini G, Pisano A, Usai E (2003) Output-feedback control of container cranes: a comparative analysis. Asian J Control 5(4):578–593CrossRefGoogle Scholar
  12. Boschetti G, Caracciolo R, Richiedei D et al (2014) Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot Comput-Integr Manuf 30(3):256–264CrossRefGoogle Scholar
  13. Carmona IG, Collado J (2016) Control of a two wired hammer head tower crane. Nonlinear Dyn 84(4):2137–2148CrossRefGoogle Scholar
  14. Cekus D, Posiadala B (2011) Vibration model and analysis of three-member telescopic boom with hydraulic cylinder for its radius change. Int J Bifurcation Chaos 21(10):2883–2892zbMATHCrossRefGoogle Scholar
  15. Chang CY, Lie HW (2012) Real-time visual tracking and measurement to control fast dynamics of overhead cranes. IEEE Trans Ind Electron 59(3):1640–1649CrossRefGoogle Scholar
  16. Duong SC, Uezato E, Kinjo H et al (2012) A hybrid evolutionary algorithm for recurrent neural network control of a three-dimensional tower crane. Autom Constr 23:55–63CrossRefGoogle Scholar
  17. Ebrahimi M, Ghayour M, Madani SM et al (2011) Swing angle estimation for anti-sway overhead crane control using load cell. Int J Control Autom Syst 9(2):301–309CrossRefGoogle Scholar
  18. Ellermann K, Kreuzer E (2003) Nonlinear dynamics in the motion of floating cranes. Multibody Syst Dyn 9(4):377–387MathSciNetzbMATHCrossRefGoogle Scholar
  19. Ellermann K, Kreuzer E, Markiewicz M (2002) Nonlinear dynamics of floating cranes. Nonlinear Dyn 27(2):107–183zbMATHCrossRefGoogle Scholar
  20. Ellermann K, Kreuzer E, Markiewicz M (2003) Nonlinear primary resonances of a floating crane. Meccanica 38(1):5–18zbMATHCrossRefGoogle Scholar
  21. Fang YC, Dixon WE, Dawson DM et al (2003) Nonlinear coupling control laws for an under actuated overhead crane system. IEEE-ASME Trans Mechatron 8(3):418–423CrossRefGoogle Scholar
  22. Fang YC, Wang PC, Sun N et al (2014) Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans Ind Electron 61(1):414–427CrossRefGoogle Scholar
  23. Hara K, Yamamoto T, Kobayashi A et al (1989) Jib crane control to suppress load swing. Int J Syst Sci 20(5):715–731MathSciNetzbMATHCrossRefGoogle Scholar
  24. Henry RJ, Masoud ZN, Nayfeh AH et al (2001) Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation. J Vib Control 7(8):1253–1264zbMATHCrossRefGoogle Scholar
  25. Huang J, Liang Z, Zang Q (2015) Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams. Mech Syst Signal Proc 54–55:357–366CrossRefGoogle Scholar
  26. Huang J, Maleki E, Singhose W (2013) Dynamics and swing control of mobile boom cranes subject to wind disturbances. IET Contr Theory Appl 7(9):1187–1195MathSciNetCrossRefGoogle Scholar
  27. Jerman B, Kramar J (2008) A study of the horizontal inertial forces acting on the suspended load of slewing cranes. Int J Mech Sci 50(3):490–500CrossRefGoogle Scholar
  28. Ju F, Choo YS, Cui FS (2006) Dynamic response of tower crane induced by the pendulum motion of the payload. Int J Solids Struct 43(2):376–389zbMATHCrossRefGoogle Scholar
  29. Kreuzer E, Pick MA, Rapp C et al (2014) Unscented Kalman filter for real-time load swing estimation of container cranes using rope forces. J Dyn Syst Meas Control-Trans ASME 136(4):041009CrossRefGoogle Scholar
  30. Lee HH (2005) Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int J Control 78(12):875–886MathSciNetzbMATHCrossRefGoogle Scholar
  31. Lee HH, Huang CH, Ku SC et al (2014) Efficient visual feedback method to control a three-dimensional overhead crane. IEEE Trans Ind Electron 61(8):4073–4083CrossRefGoogle Scholar
  32. Liu RJ, Li SH, Ding SH (2012) Nested saturation control for overhead crane systems. Trans Inst Meas Control 34(7):862–875CrossRefGoogle Scholar
  33. Mizumoto I, Chen T, Ohdaira S et al (2007) Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system. Automatica 43(12):2077–2085MathSciNetzbMATHCrossRefGoogle Scholar
  34. Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339CrossRefGoogle Scholar
  35. Sagirli A, Bogoclu ME, Omurlu VE (2003a) Modeling the dynamics and kinematics of a telescopic rotary crane by the Bond Graph method (Part I). Nonlinear Dyn 33(4):337–351zbMATHCrossRefGoogle Scholar
  36. Sagirli A, Bogoclu ME, Omurlu VE (2003b) Modeling the dynamics and kinematics of a telescopic rotary crane by the bond graph method: part II. Nonlinear Dyn 33(4):353–367zbMATHCrossRefGoogle Scholar
  37. Schaper U, Dittrich C, Arnold E et al (2014) 2-DOF skew control of boom cranes including state estimation and reference trajectory generation. Control Eng Practice 33:63–75CrossRefGoogle Scholar
  38. Shah UH, Hong K-S (2014) Input shaping control of a nuclear power plant’s fuel transport system. Nonlinear Dyn 77(4):1737–1748CrossRefGoogle Scholar
  39. Sun N, Fang YC (2012) New energy analytical results for the regulation of under actuated overhead cranes: An end-effector motion-based approach. IEEE Trans Ind Electron 59(12):4723–4734CrossRefGoogle Scholar
  40. Sun N, Fang YC, Chen H et al (2016) Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: Design and hardware experimentation. IEEE Trans Ind Electron 63(10):6407–6418CrossRefGoogle Scholar
  41. Sun GF, Liu J (2006) Dynamic responses of hydraulic crane during luffing motion. Mech Mach Theory 41(11):1273–1288zbMATHCrossRefGoogle Scholar
  42. Tomczyk J, Cink J, Kosucki A (2014) Dynamics of an overhead crane under a wind disturbance condition. Autom Constr 42:100–111CrossRefGoogle Scholar
  43. Tuan LA, Lee SG, Nho LC et al (2015) Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable. Proc Inst Mech Eng Part I-J Syst Control Eng 229(7):662–674CrossRefGoogle Scholar
  44. Zrnic ND, Bosnjak SM, Hoffmann K (2010) Parameter sensitivity analysis of non-dimensional models of quayside container cranes. Math Comput Model Dyn Syst 16(2):145–160zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations