Technologies and Methods for 3D Reconstruction in Archaeology

  • Suma DawnEmail author
  • Prantik Biswas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)


Digital Modeling of archaeological sites and the inherent cultural heritage has proved to be a tool of great importance not only for discovery of data but also for recovery and understanding of data from the archaeological site remains. The irreversible and destructive nature of excavation can be mitigated by using the techniques of 3D digital modeling using the available hardware and methodologies of computer vision and reconstruction. The widespread adoption of 3D technologies have facilitated not only timely and accurate recording methods but also storage and reusability of data that can be further used for collaborative and reconstructive tasks. This allows for preservation of the excavated objects, artefacts and landscapes and also for inter-disciplinary research. In this work we have put forth the numerous techniques that are used for 3D reconstruction of objects and artefacts, creation of virtual environments of heritage sites and underwater excavation incorporating not only unearth artefacts but also maps and location information to form a virtual and immersive environment.


3D modeling Multi-resolution Multi-layered model Integration Image acquisition Feature extraction and matching Range-sensor devises Image-sensors Object reconstruction Stereo vision Structure-from-motion Virtual environment Underwater object reconstruction 


  1. 1.
    Barceló, J., Vicente, O.: Some problems in archaeological excavation 3D modelling. Bar Int. Ser. 1227, 400–404 (2004)Google Scholar
  2. 2.
    Barrett, B.J.W.: Beyond documentation : 3D data in archaeology. In: Returning to Columbus, vol. 58, no. 4 (2014)Google Scholar
  3. 3.
    Biegański, W., Kasiński, A.: Image Acquisition in an Underwater Vision System with NIR and VIS Illumination (2014). arXiv preprint arXiv:1402.1151
  4. 4.
    Campana, S., Sordini, M., Rizzi, A., Remondino, F.: Geomatics techniques for the 3D documentation and visualization of archaeological building. In: The Conference, p. 151, December 2010Google Scholar
  5. 5.
    Chen, Q., Medioni, G.: A volumetric stereo matching method: application to image-based modeling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1. IEEE (1999)Google Scholar
  6. 6.
    Cracknell, A.P., Hayes, L.: Introduction to Remote Sensing, 2nd edn. Taylor and Francis, London (2007). ISBN 0-8493-9255-1. OCLC 70765252Google Scholar
  7. 7.
    Dancu, A., Fourgeaud, M., Franjcic, Z., Avetisyan, R.: Underwater reconstruction using depth sensors. In: SIGGRAPH Asia 2014 Technical Briefs, p. 2. ACM, December 2014Google Scholar
  8. 8.
    Evans, T.L.: Digital Archaeology: Bridging Method and Theory. Psychology Press, London (2006). Ferdani, D.: 3D reconstruction in archaeological analysis of medieval settlements (n.d.)Google Scholar
  9. 9.
    Foresti, G.L.: Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(5), 691–705 (2001)CrossRefGoogle Scholar
  10. 10.
    Frischer, B., Dakouri-Hild, A.: Reasoning in 3D: a critical appraisal of the role of 3D modelling and virtual reconstructions in archaeology. Beyond Illus.: 2D 3D Digit. Technol. Tools Discov. Archaeol. 1805, 36–45 (2008)Google Scholar
  11. 11.
    Guidi, G., Remondino, F., Russo, M., Menna, F., Rizzi, A., Ercoli, S.: A multi-resolution methodology for the 3D modeling of large and complex archeological areas a multi-resolution methodology for the 3D modeling of large and complex. Int. J. Arch. Comput. 07(01), 39–56 (2009)Google Scholar
  12. 12.
    Higgett, N., Baines, E., Everitt, D., Saucedo, G., Tatham, E.: Virtual Romans : virtual reconstruction of Roman Leicester (Ratae Corieltauvorum) 210AD, pp. 13–16 (2012)Google Scholar
  13. 13.
    Kavanagh, B.F., Glenn Bird, S.J.: Surveying principles and applications, 4th edn, pp. 257–264. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  14. 14.
    Niessner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. (TOG) 32(6), 169 (2013)CrossRefGoogle Scholar
  15. 15.
    Okutomi, M., Kanade, T.: A multiple-baseline stereo system. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993)CrossRefGoogle Scholar
  16. 16.
    Premo, L.S.: Book: Beyond Illustration: 2D and 3D Digital Technologies as Tools for Discovery in Archaeology, vol. 1805. Archaeopress, Oxford (2008)Google Scholar
  17. 17.
    Schechner, Y.Y., Karpel, N.: Clear underwater vision. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I–536. IEEE, June 2004Google Scholar
  18. 18.
    Hermon, S.: Between the real and the virtual: 3D visualization in the archaeological research - expectations and prospects. Virtual Archaeol. Rev. 2, 59–63 (2011)CrossRefGoogle Scholar
  19. 19.
    Stanco, F., Tanasi, D.: Virtual acropolis. Digital recreation of a Sicilian Archaic sanctuary. Virtual Archaeol. Rev. 3(5), 126–130 (2012)CrossRefGoogle Scholar
  20. 20.
    Sylaiou, S., Patias, P.: Virtual reconstructions in archaeology and some issues for consideration. IMEROS: Annu. J. Cult. Technol. 4(1), 180–191 (2004)Google Scholar
  21. 21.
    Tsiafaki, D., Michailidou, N.: Benefits and problems through the application of 3D technologies in archaeology: recording, visualisation, representation and reconstruction. Sci. Cult. 1(3), 37–45 (2015). Scholar
  22. 22.
    Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012)CrossRefGoogle Scholar
  23. 23.
    Zubrow, E.B.: Digital archaeology. In: Digital Archaeology. Bridging Method and Theory, pp. 10–31. London (2006)Google Scholar
  24. 24.
    A Guide to Stereovision and 3D Vision. Accessed 27 Nov 2015
  25. 25.
    Science Behind 3D Vision. Accessed 27 Nov 2015
  26. 26.
    Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR, vol. 2, no. 4, p. 6, July 2017Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Jaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations