Advertisement

Multi-image Enhancement Technique Using Max-Plus Algebra-Based Morphological Wavelet Transform

  • Sreekala KannothEmail author
  • Halugona C. Sateesh Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)

Abstract

Image enhancement is the process of improving the quality of a digitally stored image so that it is more suitable for certain applications. Here a multiimage enhancement method is proposed which uses non linear wavelets. Though wavelet transform is a linear operation, nonlinear extensions can be made by combining it with mathematical morphology. Max-plus algebra based morphological wavelet transform is a type of non-linear wavelet. Unlike the linear wavelet, this wavelet transform uses maximum and minimum operations instead of linear analysis filters. It is used to maintain the edge information of reconstructed image. The original image is decomposed into scaled, horizontal, vertical and diagonal components using max-plus algebra based morphological wavelet transform. These components undergo bilinear interpolation and coefficients are combined by averaging. Then it undergoes inverse transformation to produce a high resolution image. This method results in less mathematical calculations than other existing methods. Performance comparison parameters are calculated for the output image and it is compared with the parameters obtained from other techniques.

Keywords

Max-plus algebra Morphological wavelet Mathematical morphology SURF Bilinear interpolation 

References

  1. 1.
    Farhan, M.A., Swarup, S.K.: Mathematical morphology-based islanding detection for distributed generation. IET Gener. Transm. Distrib. 11(14), 3449–3457 (2017)CrossRefGoogle Scholar
  2. 2.
    Abijith, Sabhahit, G., Rao, N., Sequeira, P., Venugopala, P.S., Kumaki, T.: Performance of max-plus algebra-based morphological wavelet transform watermarking in android devices. In: International Conference on Wireless Communications, Signal Processing and Networking (2017)Google Scholar
  3. 3.
    Kumaki, T., Murakami, Y., Shuhei, I., Kei, N., Fujino, T., Ogura, T.: Max-plus algebra-based morphological wavelet transform watermarking for highly-parallel processing with mobile embedded processor. J. Signal Process. 16, 547–556 (2012)CrossRefGoogle Scholar
  4. 4.
    Kumaki, T., Tanito, Y., Tokunaga, T., Fujita, T., Ogura, T.: Adaptive multi-directional max-plus algebra-based morphological wavelet transform. J. Signal Process. 20, 9–19 (2016).  https://doi.org/10.2299/jsp.20.9CrossRefGoogle Scholar
  5. 5.
    Liu, W., Liang, Y.S., Chen, Z.B., Zhang, J.H.: An image super resolution reconstruction algorithm based on undecimated morphological wavelet. In: IEEE International Conference on Digital Signal Processing (DSP), pp. 600–603, 21 July 2015Google Scholar
  6. 6.
    Bede, B., Nobuhara, H.: A novel max-plus algebra based wavelet transform and its applications in image processing. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA, October 2009Google Scholar
  7. 7.
    Fadnavis, S.: Image interpolation techniques in digital image processing: an overview. Int. J. Eng. Res. Appl. 4(10), 70–73 (2014)Google Scholar
  8. 8.
    Shirai, S., Nakai, M., Kumaki, T., Fujita, T., Nakanishi, M., Ogura, T.: Morphological wavelet transform using multiple directional sampling windows on cellular hardware platform. In: IEEE 9th International New Circuits and systems conference, pp. 354–357, 26 June 2011Google Scholar
  9. 9.
    Goutsias, J., Heijmans, H.J.: Nonlinear multiresolution signal decomposition schemes- I. Morphological pyramids. IEEE Trans. Image Process. 9(11), 1862–76 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Goutsias, J., Heijmans, H.J.: Nonlinear multiresolution signal decomposition schemes-II. Morphological wavelets. IEEE Trans. Image Process. 9(11), 1897–913 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Heijmans, H.J.A.M., Goutsias, J.: Morphological pyramids and wavelets based on the quincunx lattice. In: Goutsias, J., Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. CIVI, vol. 18, pp. 273–281. Springer, Boston (2002).  https://doi.org/10.1007/0-306-47025-X_30CrossRefGoogle Scholar
  12. 12.
    Srivastava, A., Alankrita, R.A., Bhateja, V.: Combination of wavelet transform and morphological filtering for enhancement of magnetic resonance images. In: Snasel, V., Platos, J., El-Qawasmeh, E. (eds.) ICDIPC 2011. CCIS, vol. 188, pp. 460–474. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22389-1_41CrossRefGoogle Scholar
  13. 13.
    Claypoole, R.L., Davis, G.M., Sweldens, W., Baraniuk, R.G.: Nonlinear wavelet transforms for image coding via lifting. IEEE Trans. Image Process. 12, 1449–1459 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhuang, L.: Multipurpose digital watermarking algorithm based on morphological wavelet transform. In: IEEE International Conference on Communications and Mobile Computing, vol. 3, pp. 396–400, 6 Jan 2009Google Scholar
  15. 15.
    Shao, K., Zou, Y.: An image edge detection algorithm based on wavelet transform and mathematical morphology. In: Wen, Z., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 277, pp. 485–495. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54924-3_46CrossRefGoogle Scholar
  16. 16.
    Xiaoping, J., Shijun, Y., Jing, Z., Heping, C., Naiqi, L.: Research of morphological wavelet transformation in fingerprint image preprocessing. In: IEEE 6th International Conference on Web Information Systems and Applications, 18 September 2009, pp. 41–44 (2009)Google Scholar
  17. 17.
    Huang, C.P.: Image representation using fuzzy morphological wavelet. In: INTECH. Open Access Publisher (2008)Google Scholar
  18. 18.
    Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)CrossRefGoogle Scholar
  19. 19.
    Gupta, V.K., Ceci, K.: An analytical study of SIFT and SURF in image registration. Int. J. Eng. Innovative Technol. 3(9), 130–134 (2014)Google Scholar
  20. 20.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006).  https://doi.org/10.1007/11744023_32CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Visvesvaraya Technological UniversityBelgaumIndia
  2. 2.Sai Vidya Institute of TechnologyBangaloreIndia

Personalised recommendations