Quality and Complexity Measurement of 2D-DCT Archietecture Using Loeffler Algorithm Along with CSD and CSE

  • Vivek V. KajagarEmail author
  • Shaik Mohammad Ashraf Ansari
  • J. N. Swaminathan
  • S. Rajasekaran
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)


To optimize the Discrete Cosine Transform (DCT) in terms of size and to improve the quality of the image in image compression, in this paper, A 2D-DCT using Loeffler algorithm along with Canonical Signed Digit (CSD) and Canonical Sub expression Elimination (CSE) has been proposed. For fast computation 2-DCT/IDCT is executed by using 1D DCT row column method. The performance of the proposed architecture has been evaluated and compared with the other technique.


2D-DCT Area PSNR Loeffler Image compression 



Authors would like to acknowledge Dr. N. Vijayabaskara Chowdry, Correspondent, Madanapalle Institute of Technology and Science, Madanapalle.


  1. 1.
    Vijay Prakash, A.M., Gurumurthy, K.S.: A novel VLSI architecture for digital image compression using discrete cosine transform and quantization. IJCSNS 10, 175 (2010)Google Scholar
  2. 2.
    Taher, F., Zaki, A., Elsimary, H.: Design of low power FPGA architecture of image unit for space applications. In: International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE (2016)Google Scholar
  3. 3.
    Singh, K.K., Pandey, D: Implementation of DCT and IDCT based image compression and decompression on FPGA. In: International Conference on Inventive Systems and Control. IEEE (2017)Google Scholar
  4. 4.
    Park, J., Roy, K.: A low complexity reconfigurable DCT architecture to trade off image quality for power. Accessed 3 June 2008Google Scholar
  5. 5.
    Ahmed, N., Natarjan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 23(2), 90–93 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18–34 (1992)CrossRefGoogle Scholar
  7. 7.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  8. 8.
    Gall, D.L.: MPEG: a video compression standard for multimedia applications. Commun. ACM 34(4), 46–58 (1991)CrossRefGoogle Scholar
  9. 9.
    Hou, H.S.: A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans. Acoust. Speech 35(10), 1455–1461 (1987)CrossRefGoogle Scholar
  10. 10.
    Chen, W.H., Smith, C.H., Fralick, S.C.: A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977)CrossRefGoogle Scholar
  11. 11.
    Yu, S., Swartziander, E.E.: DCT implementation with distributed arithmetic. IEEE Trans. Comput. 50(9), 985–991 (2001)CrossRefGoogle Scholar
  12. 12.
    Kim, B., Ziavras, S.G.: Low-power multiplierless DCT for image/video coders. In: Proceedings of IEEE International Symposium on Consumer Electronics, May 2009, pp. 133–136 (2009)Google Scholar
  13. 13.
    Singh, T.V.P.: Matlab implementation of baseline JPEG image compression using hardware optimized discrete cosine transform. Int. J. Eng. Sci. Inven. 3(8), 47–53 (2014)Google Scholar
  14. 14.
    August, N.J., Ha, D.S.: Low power design of DCT and IDCT for low bit rate video codecs. IEEE Trans. Multimed. 6(3), 414–422 (2004)CrossRefGoogle Scholar
  15. 15.
    Martisius, I., Birvinskas, D., Jusas, V., Tamosevicius, Z.: A 2-D DCT hardware codec based on Loeffler algorithm. Elektronika IR Elektrotechnika (2011). (ISSN 1392)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vivek V. Kajagar
    • 1
    Email author
  • Shaik Mohammad Ashraf Ansari
    • 1
  • J. N. Swaminathan
    • 1
  • S. Rajasekaran
    • 1
  1. 1.Department of Electronics and Communication EngineeringMadanapalle Institute of Technology and SciencesMadanapalleIndia

Personalised recommendations