Advertisement

Bit-Plane Specific Measures and Its Applications in Analysis of Image Ciphers

  • Ram RatanEmail author
  • Arvind
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)

Abstract

The paper presents bit-plane specific new measures to visualize the extensive statistical detail of an image. We compute the frequency of ones, maximum run length and correlation among rows (columns) in each bit-plane of an image. The computed measures give row-wise and column-wise structural detail at bit-plane level and help an interpreter to analyze given image deeply for its effective interpretation and understanding. In this paper, the application of these measures is shown in cryptography to statistically analyze the image ciphers. The simulation study shows that the proposed measures are very useful and can be applied in various image processing applications for pattern recognition and understanding of visual objects.

Keywords

Bit-plane measures Image analysis Image cipher Image quality measures Qualitative measures Quantitative measures 

References

  1. 1.
    Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  2. 2.
    Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)CrossRefGoogle Scholar
  3. 3.
    Janssen, T.J.W.M., Blommaert, F.J.: Computational approach to image quality. Displays 21(4), 129–142 (2000)CrossRefGoogle Scholar
  4. 4.
    Avcibas, I., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. J. Electron. Imag. 11(2), 206–223 (2002)CrossRefGoogle Scholar
  5. 5.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  6. 6.
    Lin, W., Kuo, C.C.: Perceptual visual quality metrics: A survey. J. Vis. Commun. and Image Representation 22(4), 297–312 (2011)CrossRefGoogle Scholar
  7. 7.
    Bouyer, P., et al.: Quantitative analysis of real-time systems using priced timed automata. J. Commun. ACM 54(9), 78–87 (2011)CrossRefGoogle Scholar
  8. 8.
    George, A.G., Prabavathy, A.K.: A survey on different approaches used in image quality assessment. J. Emerging Technol. and Advanced Eng. 3(2), 197–203 (2013)Google Scholar
  9. 9.
    Keelan, B.W.: Handbook of Image Quality: Characterization and Prediction. Marcel Dekker Inc., New York (2002)CrossRefGoogle Scholar
  10. 10.
    Streijl, R.C., Winkler, S., Hands, D.S.: Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives. Multimedia Syst. 22(2), 213–227 (2016)CrossRefGoogle Scholar
  11. 11.
    Lahouhou, A., Viennet, E., Beghdadi, A.: Selecting low-level features for image quality assessment by statistical methods. J. Comput. Inf. Technol. CIT 18(2), 183–189 (2010)CrossRefGoogle Scholar
  12. 12.
    Huber, P., Ronchetti, E.: Robust Statistics. Wiley, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Doane, D.P., Seward, L.E.: Measuring skewness: a forgotten statistics. J. Stat. Educ. 19(2), 1–18 (2011)CrossRefGoogle Scholar
  14. 14.
    Neto, A.M., Victorino, A.C., Fantoni, I., Zampieri, D.E.: Automatic regions-of-interest selection based on Pearsons correlation coefficient. In: IEEE International Conference on Intelligent Robots and Systems, California, U.S., pp. 33–38 (2011)Google Scholar
  15. 15.
    Usama, M., Khan, M.K., Alghathbar, K., Lee, C.: Chaotic-based secure satellite imagery cryptosystem. Comput. Math. Appl. 60(2), 326–337 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recogn. 26(1), 167–174 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Alaa, E., Hasan, D.: Co-occurrence matrix and its statistical features as a new approach for face recognition. Turk J. Elec. Eng. Comp. Sci. 19(1), 97–107 (2011)Google Scholar
  18. 18.
    Haddon, J.F., Boyce, J.F.: Co-occurrence matrices for image analysis. IEEE Electron. Commun. Eng. J. 5(2), 71–83 (1993)CrossRefGoogle Scholar
  19. 19.
    Zhou, W., Bovik, A.C.: Mean Squared Error: love it or leave it? A new look at Signal Fidelity Measures. IEEE Sig. Processing Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar
  20. 20.
    Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientif Model Dev. 7(1), 1247–1250 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhang, N., Vladar, A.E., Postek, M.T., Larrabee, B.: A kurtosis-based statistical measure for two-dimensional processes and its application to image sharpness. Proc. Sect. Phys. Eng. Sci. Am. Stat. Soc., 4730–4736 (2003)Google Scholar
  22. 22.
    Ratan, R.: Securing images using inversion and shifting. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds.) SocProS 2011. AISC, vol. 131, pp. 401–412. Springer, New Delhi (2012).  https://doi.org/10.1007/978-81-322-0491-6_38CrossRefGoogle Scholar
  23. 23.
    Katzenbeisser, S., Petitcolas, F.A.P.: Information Hiding Techniques for Steganography and Digital Watermarking. Artech House, Norwood (2000)Google Scholar
  24. 24.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  25. 25.
    Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  26. 26.
    El-Samie Fathi, E.A., et al.: Image Encryption: A Communication Perspective. CRC Press, Boca Raton (2017)Google Scholar
  27. 27.
    Stinson, D.R.: Cryptography: Theory and Practice. Discrete Mathematics and Its Applications. Chapman & Hall/CRC Press, Ontario (2005)zbMATHGoogle Scholar
  28. 28.
    Zhang, W., Wong, K., Hai, Y., Zhu, Z.: An image encryption scheme using lightweight bit-level confusion and cascade cross circular diffusion. Optics Commun. 285(9), 2343–2354 (2012)CrossRefGoogle Scholar
  29. 29.
    Fu, C. and Zhu, Z.: A chaotic encryption scheme based on circular bit shift method. In: International Conference for Young Computer Scientists, pp. 3057–3061. IEEE Computer Society, Los Alamitos (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Scientific Analysis GroupDefence Research and Development OrganizationDelhiIndia
  2. 2.Department of Mathematics, Hansraj CollegeUniversity of DelhiDelhiIndia

Personalised recommendations