Metalenses and Meta-mirrors

  • Xiangang LuoEmail author


Lenses are the fundamental optical components and play the key roles in most of the optical systems, including cameras, microscopes, telescopes, projective lithographic machines, and spectrometers. Traditional lenses are made from materials such as glass or plastic and are polished or molded to desired shapes. However, the traditional refractive/reflective or diffractive lenses have their intrinsic limits in integration, weight, chromatic aberration, among others. The newly emerging metalenses may be promising alternatives to overcome these limits for practical applications. In this chapter, we will start with a brief review of the traditional lens in Sect. 9.1. Then, the design methods of the planar metalens and meta-mirror in EO 2.0 are introduced in Sect. 9.2. In Sects. 9.3 and 9.4, planar lenses with large numerical aperture (NA) and wide field of view, which are extremely difficult to realize in traditional optics with compact volume, are discussed in detail. Important technologies and the latest developments in metalenses, including achromatic or super-chromatic imaging, and tunable imaging, are elaborated and highlighted in Sects. 9.5 and 9.6. At last, we also give a brief introduction of nonlinear metalens in Sect. 9.7.


Flat optics Flat lens Snell’s law Active lens 


  1. 1.
  2. 2.
    Objective lens system of Olympus E-30 DSLR Camera.
  3. 3.
    M. Totzeck, W. Ulrich, A. Göhnermeier, W. Kaiser, Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629 (2007)Google Scholar
  4. 4.
  5. 5.
    G. Andersen, D. Tullson, Broadband antihole photon sieve telescope. Appl. Opt. 46, 3706–3708 (2007)Google Scholar
  6. 6.
  7. 7.
    G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)Google Scholar
  8. 8.
    S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)Google Scholar
  9. 9.
    H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815–6820 (2005)Google Scholar
  10. 10.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)Google Scholar
  11. 11.
    L. Bourke, R.J. Blaikie, Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures. J. Opt. 19, 095003 (2017)Google Scholar
  12. 12.
    P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)Google Scholar
  13. 13.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)Google Scholar
  14. 14.
    T. Xu, C. Du, C. Wang, X. Luo, Subwavelength imaging by metallic slab lens with nanoslits. Appl. Phys. Lett. 91, 201501 (2007)Google Scholar
  15. 15.
    L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2008)Google Scholar
  16. 16.
    S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2012)Google Scholar
  17. 17.
    Y. Chen, C. Zhou, X. Luo, C. Du, Structured lens formed by a 2D square hole array in a metallic film. Opt. Lett. 33, 753–755 (2008)Google Scholar
  18. 18.
    J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, J. Tian, Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater. 25, 704–710 (2015)Google Scholar
  19. 19.
    K. Huang, H. Liu, F.J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, C.-W. Qiu, Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015)Google Scholar
  20. 20.
    L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann, Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001)Google Scholar
  21. 21.
    H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L.P. Hariri, D.C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, M.J. Suter, Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018)Google Scholar
  22. 22.
    E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, A. Faraon, Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016)Google Scholar
  23. 23.
    Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, J.-W. Dong, Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10, 014005 (2018)Google Scholar
  24. 24.
    A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018)Google Scholar
  25. 25.
    M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016)Google Scholar
  26. 26.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)Google Scholar
  27. 27.
    X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012)Google Scholar
  28. 28.
    X. Chen, M. Chen, M.Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, S. Zhang, Longitudinal multifoci metalens for circularly polarized light. Adv. Opt. Mater. 3, 1201–1206 (2015)Google Scholar
  29. 29.
    F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27, 1704295 (2018)Google Scholar
  30. 30.
    M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, F. Capasso, Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016)Google Scholar
  31. 31.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)Google Scholar
  32. 32.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)Google Scholar
  33. 33.
    M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, C. Huang, X. Luo, Broadband anomalous reflection based on gradient low-Q meta-surface. AIP Adv. 3, 052136 (2013)Google Scholar
  34. 34.
    X. Li, S. Xiao, B. Cai, Q. He, T.J. Cui, L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940–4942 (2012)Google Scholar
  35. 35.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)Google Scholar
  36. 36.
    A. Pors, M.G. Nielsen, R.L. Eriksen, S.I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013)Google Scholar
  37. 37.
    A.B. Klemm, D. Stellinga, E.R. Martins, L. Lewis, G. Huyet, L. O’Faolain, T.F. Krauss, Experimental high numerical aperture focusing with high contrast gratings. Opt. Lett. 38, 3410–3413 (2013)Google Scholar
  38. 38.
    A. Arbabi, Y. Horie, A.J. Ball, M. Bagheri, A. Faraon, Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015)Google Scholar
  39. 39.
    W.T. Chen, A.Y. Zhu, M. Khorasaninejad, Z.J. Shi, V. Sanjeev, F. Capasso, Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188–3194 (2017)Google Scholar
  40. 40.
    H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T.F. Krauss, J. Li, Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018)Google Scholar
  41. 41.
    R. Paniagua-Domínguez, Y.F. Yu, E. Khaidarov, S. Choi, V. Leong, R.M. Bakker, X. Liang, Y.H. Fu, V. Valuckas, L.A. Krivitsky, A.I. Kuznetsov, A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018)Google Scholar
  42. 42.
    F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18, 12606–12614 (2010)Google Scholar
  43. 43.
    F. Aieta, P. Genevet, M. Kats, F. Capasso, Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013)Google Scholar
  44. 44.
    A. Kalvach, Z. Szabó, Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B 33, A66–A71 (2016)Google Scholar
  45. 45.
    J. Hunt, T. Tyler, S. Dhar, Y.-J. Tsai, P. Bowen, S. Larouche, N.M. Jokerst, D.R. Smith, Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706–1713 (2012)Google Scholar
  46. 46.
    F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)Google Scholar
  47. 47.
    H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)Google Scholar
  48. 48.
    W.X. Jiang, C.-W. Qiu, T.C. Han, Q. Cheng, H.F. Ma, S. Zhang, T.J. Cui, Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater. 25, 6963–6968 (2013)Google Scholar
  49. 49.
    Y.-Y. Zhao, Y.-L. Zhang, M.-L. Zheng, X.-Z. Dong, X.-M. Duan, Z.-S. Zhao, Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016)Google Scholar
  50. 50.
    A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)Google Scholar
  51. 51.
    C. Sun, Shrinking the camera size. Nat. Mater. 16, 11 (2016)Google Scholar
  52. 52.
    B. Groever, W.T. Chen, F. Capasso, Meta-Lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017)Google Scholar
  53. 53.
    T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016)Google Scholar
  54. 54.
  55. 55.
    M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)Google Scholar
  56. 56.
    X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)Google Scholar
  57. 57.
    Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, X. Luo, Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 5, 1600502 (2017)Google Scholar
  58. 58.
    X. Li, M. Pu, Y. Wang, X. Ma, Y. Li, H. Gao, Z. Zhao, P. Gao, C. Wang, X. Luo, Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv. Opt. Mater. 4, 659–663 (2016)Google Scholar
  59. 59.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)Google Scholar
  60. 60.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)Google Scholar
  61. 61.
    W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian, Metasurface enabled wide-angle fourier lens. Adv. Mater. 30, 1706368 (2018)Google Scholar
  62. 62.
    Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo, High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6, 1800592 (2018)Google Scholar
  63. 63.
    Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, X. Luo, Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016)Google Scholar
  64. 64.
    Z. Zhao, M. Pu, H. Gao, J. Jin, X. Li, X. Ma, Y. Wang, P. Gao, X. Luo, Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep. 5, 15781 (2015)Google Scholar
  65. 65.
    K. Li, Y. Guo, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Dispersion controlling meta-lens at visible frequency. Opt. Express 25, 21419–21427 (2017)Google Scholar
  66. 66.
    O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen, Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017)Google Scholar
  67. 67.
    P. Venugopalan, Q. Zhang, X. Li, L. Kuipers, M. Gu, Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt. Lett. 39, 5744–5747 (2014)Google Scholar
  68. 68.
    O. Eisenbach, O. Avayu, R. Ditcovski, T. Ellenbogen, Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23, 3928–3936 (2015)Google Scholar
  69. 69.
    Z.-L. Deng, S. Zhang, G.P. Wang, Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016)Google Scholar
  70. 70.
    M. Khorasaninejad, F. Aieta, P. Kanhaiya, M.A. Kats, P. Genevet, D. Rousso, F. Capasso, Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015)Google Scholar
  71. 71.
    F. Aieta, M.A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015)Google Scholar
  72. 72.
    M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017)Google Scholar
  73. 73.
    S. Wang, J. Lai, T. Wu, C. Chen, J. Sun, Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface. Opt. Express 25, 7121–7130 (2017)Google Scholar
  74. 74.
    S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, C.H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, D.P. Tsai, Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017)Google Scholar
  75. 75.
    H.H. Hsiao, H. Chen Yu, J. Lin Ren, C. Wu Pin, S. Wang, H. Chen Bo, P. Tsai Din, Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv. Opt. Mater. 6, 1800031 (2018)Google Scholar
  76. 76.
    W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220 (2018)Google Scholar
  77. 77.
    S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227 (2018)Google Scholar
  78. 78.
    A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)Google Scholar
  79. 79.
    S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 5, 1600829 (2017)Google Scholar
  80. 80.
    H.-S. Ee, R. Agarwal, Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016)Google Scholar
  81. 81.
    S.M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, A. Faraon, Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 10, 1062 (2016)Google Scholar
  82. 82.
    L.W. Alvarez, Two-element variable-power spherical lens. US Patent, US3305294A (1967)Google Scholar
  83. 83.
    A. Zhan, S. Colburn, C.M. Dodson, A. Majumdar, Metasurface freeform nanophotonics. Sci. Rep. 7, 1673 (2017)Google Scholar
  84. 84.
    C. Min, P. Wang, X. Jiao, Y. Deng, H. Ming, Beam manipulating by metallic nano-optic lens containing nonlinear media. Opt. Express 15, 9541–9546 (2007)Google Scholar
  85. 85.
    M.A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012)Google Scholar
  86. 86.
    M.A. Kats, R. Blanchard, P. Genevet, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013)Google Scholar
  87. 87.
    Y. Chen, X. Li, X. Luo, S.A. Maier, M. Hong, Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photon. Res. 3, 54–57 (2015)Google Scholar
  88. 88.
    Y. Chen, X. Li, Y. Sonnefraud, A.I. Fernandez-Dominguez, X. Luo, M. Hong, S.A. Maier, Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8860 (2015)Google Scholar
  89. 89.
    Y.G. Chen, T.S. Kao, B. Ng, X. Li, X.G. Luo, B. Luk’yanchuk, S.A. Maier, M.H. Hong, Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013)Google Scholar
  90. 90.
    V.K. Mkhitaryan, D.S. Ghosh, M. Rudé, J. Canet-Ferrer, R.A. Maniyara, K.K. Gopalan, V. Pruneri, Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns. Adv. Opt. Mater. 5, 1600452 (2016)Google Scholar
  91. 91.
    T. Li, L. Huang, J. Liu, Y. Wang, T. Zentgraf, Tunable wave plate based on active plasmonic metasurfaces. Opt. Express 25, 4216–4226 (2017)Google Scholar
  92. 92.
    C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)Google Scholar
  93. 93.
    Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016)Google Scholar
  94. 94.
    N. Raeis-Hosseini, J. Rho, Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 10, 1046 (2017)Google Scholar
  95. 95.
    A.M. Shaltout, A.V. Kildishev, V.M. Shalaev, Evolution of photonic metasurfaces: from static to dynamic. J. Opt. Soc. Am. B 33, 501–510 (2016)Google Scholar
  96. 96.
    H.-X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G.-M. Wang, T. Cai, H.-P. Li, L. Zhou, Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016)Google Scholar
  97. 97.
    B.O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, Y. Feng, Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci. Rep. 4, 4971 (2014)Google Scholar
  98. 98.
    J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cui, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013)Google Scholar
  99. 99.
    X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)Google Scholar
  100. 100.
    D.F. Sievenpiper, J.H. Schaffner, H.J. Song, R.Y. Loo, G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 51, 2713–2722 (2003)Google Scholar
  101. 101.
    K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, C.-W. Qiu, A reconfigurable active Huygens’ metalens. Adv. Mater. 29, 1606422 (2017)Google Scholar
  102. 102.
    H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2, 295–298 (2008)Google Scholar
  103. 103.
    H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)Google Scholar
  104. 104.
    O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015)Google Scholar
  105. 105.
    Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014)Google Scholar
  106. 106.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014)Google Scholar
  107. 107.
    E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon, MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018)Google Scholar
  108. 108.
    A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018)Google Scholar
  109. 109.
    M. Rahmani, G. Leo, I. Brener, A. Zayats, S. Maier, C. De Angelis, H. Tan, V.F. Gili, F. Karouta, R. Oulton, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)Google Scholar
  110. 110.
    M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012)Google Scholar
  111. 111.
    S. Chen, G. Li, W. Cheah Kok, T. Zentgraf, S. Zhang, Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics 7, 1013–1024 (2018)Google Scholar
  112. 112.
    N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 9, 180–184 (2015)Google Scholar
  113. 113.
    E. Almeida, G. Shalem, Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun. 7, 10367 (2016)Google Scholar
  114. 114.
    J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014)Google Scholar
  115. 115.
    M. Tymchenko, J.S. Gomez-Diaz, J. Lee, N. Nookala, M.A. Belkin, A. Alù, Gradient nonlinear pancharatnam-berry metasurfaces. Phys. Rev. Lett. 115, 207403 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations