Sub-Diffraction-Limited Nanolithography

  • Xiangang LuoEmail author


Sub-diffraction-limited nanolithography is one of the main applications in EO 2.0. In this chapter, we first give a brief introduction about the diffraction-limited lithography and the significance of breaking diffraction limit. Then we would like to summarize the research achievements of plasmonic lithography in the manners of interference, imaging, and direct writing. Some representative techniques are described in detail. The key aspects in evaluating the performance of plasmonic lithography are also discussed, such as resolution, fidelity, and the aspect ratio of nanopatterns. Some new physics and materials accompanying plasmonic devices design as well as lithography are presented. Subsequently, we discuss the engineering aspects of plasmonic lithography, like depth amplification and pattern transfer, resolution enhancement, and precision systems. In addition, practical applications of plasmonic lithography are introduced. The remaining problems and outlooks of plasmonic lithography are given in the end.


Plasmonic lithography Diffraction limit Evanescent waves 


  1. 1.
    M. Totzeck, W. Ulrich, A. Göhnermeier, W. Kaiser, Pushing deep ultraviolet lithography to its limits. Nat. Photonics 1, 629 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Wagner, N. Harned, Lithography gets extreme. Nat. Photonics 4, 24 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature 412, 697 (2001)CrossRefGoogle Scholar
  4. 4.
    Z. Gan, Y. Cao, R.A. Evans, M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013)CrossRefGoogle Scholar
  5. 5.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998)CrossRefGoogle Scholar
  6. 6.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)CrossRefGoogle Scholar
  7. 7.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  10. 10.
    P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Luo, Catenary Optics (Springer, Singapore, 2019)CrossRefGoogle Scholar
  13. 13.
    L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo, Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz. 4, 290–296 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Chen, X. Luo, H. Tian, J. Shi, Contact or proximity nanolithography system using normal or long wavelength light, Chinese Patent Office Patent ZL03123574.3, 29 May 2003Google Scholar
  15. 15.
    X. Luo, D. Tsai, M. Gu, M. Hong, Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. (2019)Google Scholar
  16. 16.
    C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, X. Luo, Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt. Express 21, 20683–20691 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)CrossRefGoogle Scholar
  18. 18.
    Z.-W. Liu, Q.-H. Wei, X. Zhang, Surface plasmon interference nanolithography. Nano Lett. 5, 957–961 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, X. Luo, Subwavelength nanolithography based on unidirectional excitation of surface plasmons. J. Opt. A Pure Appl. Opt. 11, 085003 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, X. Zhang, Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9, 462–466 (2009)CrossRefGoogle Scholar
  22. 22.
    W. Ge, C. Wang, Y. Xue, B. Cao, B. Zhang, K. Xu, Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity. Opt. Express 19, 6714–6723 (2011)CrossRefGoogle Scholar
  23. 23.
    K.V. Sreekanth, V.M. Murukeshan, Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning. J. Opt. Soc. Am. A 27, 95–99 (2010)CrossRefGoogle Scholar
  24. 24.
    K.V. Sreekanth, V.M. Murukeshan, Effect of metals on UV-excited plasmonic lithography for sub-50 nm periodic feature fabrication. Appl. Phys. A 101, 117–120 (2010)CrossRefGoogle Scholar
  25. 25.
    X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)CrossRefGoogle Scholar
  26. 26.
    T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, X. Luo, Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Dong, J. Liu, G. Kang, J. Xie, Y. Wang, Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci. Rep. 4, 5618 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Liu, Y. Luo, Z. Zhao, W. Zhang, G. Gao, B. Zeng, C. Wang, X. Luo, Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes. Sci. Rep. 6, 30450 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Chen, F. Yang, C. Zhang, J. Zhou, L.J. Guo, Large-area high aspect ratio plasmonic interference lithography utilizing a single high-k mode. ACS Nano 10, 4039–4045 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)CrossRefGoogle Scholar
  31. 31.
    C. Wang, Y. Zhao, D. Gan, C. Du, X. Luo, Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films. Opt. Express 16, 4217–4227 (2008)CrossRefGoogle Scholar
  32. 32.
    G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, X. Luo, Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Adv. Opt. Mater. 3, 1248–1256 (2015)CrossRefGoogle Scholar
  33. 33.
    Z. Guo, Z.Y. Zhao, L.S. Yan, P. Gao, C.T. Wang, N. Yao, K.P. Liu, B. Jiang, X.G. Luo, Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films. Appl. Phys. Lett. 105, 141107 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, M. Pu, X. Luo, Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt. Mater. Express 8, 199–209 (2018)CrossRefGoogle Scholar
  35. 35.
    Y. Li, F. Liu, L. Xiao, K. Cui, X. Feng, W. Zhang, Y. Huang, Two-surface-plasmon-polariton-absorption based nanolithography. Appl. Phys. Lett. 102, 063113 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Li, F. Liu, Y. Ye, W. Meng, K. Cui, X. Feng, W. Zhang, Y. Huang, Two-surface-plasmon-polariton-absorption based lithography using 400 nm femtosecond laser. Appl. Phys. Lett. 104, 081115 (2014)CrossRefGoogle Scholar
  37. 37.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  38. 38.
    H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambat, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005)CrossRefGoogle Scholar
  39. 39.
    P. Chaturvedi, N.X. Fang, Molecular scale imaging with a multilayer superlens. MRS Proc. 919, 0919-J04-07 (2006)Google Scholar
  40. 40.
    D.O.S. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRefGoogle Scholar
  41. 41.
    N. Fang, H. Lee, C. Sun, X. Zhang, Diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)CrossRefGoogle Scholar
  42. 42.
    P. Chaturvedi, W. Wu, V. Logeeswaran, Z. Yu, M.S. Islam, S.Y. Wang, R.S. Williams, N.X. Fang, A smooth optical superlens. Appl. Phys. Lett. 96, 043102 (2010)CrossRefGoogle Scholar
  43. 43.
    H. Liu, B. Wang, L. Ke, J. Deng, C.C. Chum, S.L. Teo, L. Shen, S.A. Maier, J. Teng, High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett. 12, 1549–1554 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Huang, H. Wang, K.-H. Ding, L. Tsang, Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. Opt. Lett. 37, 1295–1297 (2012)CrossRefGoogle Scholar
  45. 45.
    H. Wang, J.Q. Bagley, L. Tsang, S. Huang, K.-H. Ding, A. Ishimaru, Image enhancement for flat and rough film plasmon superlenses by adding loss. J. Opt. Soc. Am. B 28, 2499–2509 (2011)CrossRefGoogle Scholar
  46. 46.
    H. Liu, B. Wang, L. Ke, J. Deng, C.C. Choy, M.S. Zhang, L. Shen, S.A. Maier, J.H. Teng, High contrast superlens lithography engineered by loss reduction. Adv. Funct. Mater. 22, 3777–3783 (2012)CrossRefGoogle Scholar
  47. 47.
    D.B. Shao, S.C. Chen, Numerical simulation of surface-plasmon-assisted nanolithography. Opt. Express 13, 6964–6973 (2005)CrossRefGoogle Scholar
  48. 48.
    D.B. Shao, S.C. Chen, Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett. 86, 253107 (2005)CrossRefGoogle Scholar
  49. 49.
    M.D. Arnold, R.J. Blaikie, Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. Opt. Express 15, 11542–11552 (2007)CrossRefGoogle Scholar
  50. 50.
    Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, X. Luo, Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods. Opt. Express 24, 27115–27126 (2016)CrossRefGoogle Scholar
  51. 51.
  52. 52.
    W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, X. Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142 (2008)Google Scholar
  53. 53.
    Y. Xiong, Z. Liu, X. Zhang, A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl. Phys. Lett. 94, 203108 (2009)CrossRefGoogle Scholar
  54. 54.
    L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)CrossRefGoogle Scholar
  55. 55.
    J. Sun, T. Xu, N.M. Litchinitser, Experimental demonstration of demagnifying hyperlens. Nano Lett. 16, 7905–7909 (2016)CrossRefGoogle Scholar
  56. 56.
    X. Tao, C. Wang, Z. Zhao, Y. Wang, N. Yao, X. Luo, A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens. Appl. Phys. B 114, 545–550 (2014)CrossRefGoogle Scholar
  57. 57.
    Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, X. Luo, Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci. Rep. 5, 15320 (2015)CrossRefGoogle Scholar
  58. 58.
    W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, X. Luo, Off Axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography. Plasmonics 9, 1333–1339 (2014)CrossRefGoogle Scholar
  59. 59.
    W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, X. Luo, Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination. Plasmonics 10, 51–56 (2015)CrossRefGoogle Scholar
  60. 60.
    Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, X. Zhu, Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 11, 893–897 (2011)CrossRefGoogle Scholar
  61. 61.
    W. Chen, R.L. Nelson, Q. Zhan, Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt. Lett. 37, 1442–1444 (2012)CrossRefGoogle Scholar
  62. 62.
    S. Yang, W. Chen, R.L. Nelson, Q. Zhan, Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 34, 3047–3049 (2009)CrossRefGoogle Scholar
  63. 63.
    M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, X. Luo, Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8, 1635–1641 (2016)CrossRefGoogle Scholar
  64. 64.
    C. Ma, Z. Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett. 96, 183103 (2010)CrossRefGoogle Scholar
  65. 65.
    Y. Wang, W. Srituravanich, C. Sun, X. Zhang, Plasmonic nearfield scanning probe with high transmission. Nano Lett. 8, 3041–3045 (2008)CrossRefGoogle Scholar
  66. 66.
    W. Srituravanich, L. Pan, Y. Wang, C. Sun, D.B. Bogy, X. Zhang, Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733 (2008)CrossRefGoogle Scholar
  67. 67.
    L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D.B. Bogy, X. Zhang, Maskless plasmonic lithography at 22 nm resolution. Sci. Rep. 1, 175 (2011)CrossRefGoogle Scholar
  68. 68.
    S. Kim, H. Jung, Y. Kim, J. Jang, J.W. Hahn, Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch. Adv. Mater. 24, OP337–OP344 (2012)Google Scholar
  69. 69.
    Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, X. Luo, Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme. Plasmonics 10, 1607–1613 (2015)CrossRefGoogle Scholar
  70. 70.
    C. Wang, W. Zhang, Z. Zhao, Y. Wang, P. Gao, Y. Luo, X. Luo, Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review. Micromachines 7, 118 (2016)CrossRefGoogle Scholar
  71. 71.
    J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, X. Luo, Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution. Plasmonics 8, 1073–1078 (2013)CrossRefGoogle Scholar
  72. 72.
    H. Jung, S. Kim, D. Han, J. Jang, S. Oh, J.-H. Choi, E.-S. Lee, J.W. Hahn, Plasmonic lithography for fabricating nanoimprint masters with multi-scale patterns. J. Micromech. Microeng. 25, 055004 (2015)CrossRefGoogle Scholar
  73. 73.
    P. Gao, X. Li, Z. Zhao, X. Ma, M. Pu, C. Wang, X. Luo, Pushing the plasmonic imaging nanolithography to nano-manufacturing. Opt. Commun. 404, 62–72 (2017)CrossRefGoogle Scholar
  74. 74.
    O. Ozturk, Multi-scale alignment and positioning system II, Doctor, The University of North Carolina, 2008Google Scholar
  75. 75.
    R. Fesperman, O. Ozturk, R. Hocken, S. Ruben, T.-C. Tsao, J. Phipps, T. Lemmons, J. Brien, G. Caskey, Multi-scale alignment and positioning system—MAPS. Precis. Eng. 36, 517–537 (2012)CrossRefGoogle Scholar
  76. 76.
    M. Liu, C. Zhao, Y. Luo, Z. Zhao, Y. Wang, P. Gao, C. Wang, X. Luo, Subdiffraction plasmonic lens lithography prototype in stepper mode. J. Vac. Sci. Technol. B 35, 011603 (2016)CrossRefGoogle Scholar
  77. 77.
    H. Jung, Y. Kim, S. Kim, J. Jang, J.W. Hahn, High-resolution laser direct writing with a plasmonic contact probe, in Proceedings of SPIE 8323, Alternative Lithographic Technologies IV, vol. 8323 (2012), pp. 83232A-8323–7Google Scholar
  78. 78.
    S. Oh, T. Lee, J.W. Hahn, Multifunctional bowtie-shaped ridge aperture for overlay alignment in plasmonic direct writing lithography using a contact probe. Opt. Lett. 38, 2250–2252 (2013)CrossRefGoogle Scholar
  79. 79.
    X. Wen, L.M. Traverso, P. Srisungsitthisunti, X. Xu, E.E. Moon, High precision dynamic alignment and gap control for optical near-field nanolithography. J. Vac. Sci. Technol. B 31, 041601 (2013)CrossRefGoogle Scholar
  80. 80.
    H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343 (2007)CrossRefGoogle Scholar
  81. 81.
    X.-F. Shen, X.-Y. Yang, L.-X. You, Performance of superconducting nanowire single-photon detection system. Chin. Phys. Lett. 27, 087404 (2010)CrossRefGoogle Scholar
  82. 82.
    A. Tuantranont, Applications of Nanomaterials in Sensors and Diagnostics. Springer series on chemical sensors and biosensors (Springer, Berlin Heidelberg, 2014)Google Scholar
  83. 83.
    N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889 (2014)CrossRefGoogle Scholar
  84. 84.
    J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, X. Luo, Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale 7, 18805–18812 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations