Advertisement

Fabrication Techniques

  • Xiangang LuoEmail author
Chapter

Abstract

Different from well-established and highly refined fabrication processes in EO 1.0, the fabrication techniques in EO 2.0 are still imperfect, which need to be carefully investigated to form systematic processing methods. In this chapter, we first introduce the status of manufacturing techniques in EO 1.0, including the fabrication of refractive, reflective, and diffractive optical elements. The challenges of the manufacturing techniques for EO 1.0 are also summarized. Then, we will introduce the progresses of fabrication techniques in EO 2.0, such as the layered fabrication techniques, direct-writing techniques, and subwavelength structures fabrication techniques. The principles and implementations of these methods will be stated in detail. Some technological challenges in EO 2.0 are also discussed, including large-aperture manufacturing, conformal flexible manufacturing, and super-molecular and super-atom manufacturing.

Keywords

Micro-/nanofabrication Optical fabrication 

References

  1. 1.
    K. Schwertz, An introduction to the optics manufacturing process. Optomech. Rep. (2008)Google Scholar
  2. 2.
    A.Y.C. Nee, Handbook of Manufacturing Engineering and Technology (Springer, 2015)Google Scholar
  3. 3.
    H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010)Google Scholar
  4. 4.
    Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, 2017)Google Scholar
  5. 5.
    M.T. Gale, K. Knop, The fabrication of fine lens arrays by laser beam writing, in Proceedings of SPIE 0398, Industrial Applications of Laser Technology, vol. 0398 (1983), pp. 0398–7Google Scholar
  6. 6.
    H.P. Herzig, Micro-Optics: Elements, Systems and Applications (Taylor & Francis Ltd, 1997)Google Scholar
  7. 7.
    B. Bharat, Encyclopedia of Nanotechnology (Springer Science+Business Media B.V., 2012)Google Scholar
  8. 8.
    C. Du, X. Dong, C. Qiu, Q. Deng, C. Zhou, Profile control technology for high-performance microlens array. Opt. Eng. 43, 2595–2602 (2004)CrossRefGoogle Scholar
  9. 9.
    J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht, Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010)CrossRefGoogle Scholar
  10. 10.
    V.J. Logeeswaran, N.P. Kobayashi, M.S. Islam, W. Wu, P. Chaturvedi, N.X. Fang, S.Y. Wang, R.S. Williams, Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 9, 178–182 (2009)CrossRefGoogle Scholar
  11. 11.
    J.H. Park, P. Ambwani, M. Manno, N.C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, D.J. Norris, Single-crystalline silver films for plasmonics. Adv. Mater. 24, 3988–3992 (2012)CrossRefGoogle Scholar
  12. 12.
    C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K.R. Wu, L.J. Guo, An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 26, 5696–5701 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Wu, C. Zhang, N.M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G.K. Pribil, A. Alù, C.-K. Shih, X. Li, Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater. 26, 6106–6110 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 6, 450 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Lee, Z. Liu, Y. Xiong, C. Sun, X. Zhang, Development of optical hyperlens for imaging below the diffraction limit. Opt. Express 15, 15886–15891 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, X. Luo, Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Adv. Opt. Mater. 3, 1248–1256 (2015)CrossRefGoogle Scholar
  21. 21.
    A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946 (2007)CrossRefGoogle Scholar
  22. 22.
    M.Y. Shalaginov, V.V. Vorobyov, J. Liu, M. Ferrera, A.V. Akimov, A. Lagutchev, A.N. Smolyaninov, V.V. Klimov, J. Irudayaraj, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser Photonics Rev. 9, 120–127 (2014)CrossRefGoogle Scholar
  23. 23.
    D. Gil, R. Menon, H.I. Smith, The promise of diffractive optics in maskless lithography. Micro Nano Eng. 2003(73–74), 35–41 (2004)CrossRefGoogle Scholar
  24. 24.
    R. Menon, E.E. Moon, M.K. Mondol, F.J. Castaño, H.I. Smith, Scanning-spatial-phase alignment for zone-plate-array lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22, 3382–3385 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Menon, A. Patel, E.E. Moon, H.I. Smith, Alpha-prototype system for zone-plate-array lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22, 3032–3037 (2004)CrossRefGoogle Scholar
  26. 26.
    H.I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, G. Barbastathis, Zone-plate-array lithography: a low-cost complement or competitor to scanning-electron-beam lithography. Microelectron. Eng. MNE 2005(83), 956–961 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Menon, A. Patel, D. Chao, M. Walsh, H.I. Smith, Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning, in Proceedings of SPIE 5751, Emerging Lithographic Technologies IX, vol. 5751 (2005), pp. 5751–10Google Scholar
  28. 28.
    P. Björnängen, M. Ekberg, T. Öström, H.A. Fosshaug, J. Karlsson, C. Björnberg, F.K. Nikolajeff, M. Karlsson, DOE manufacture with the DUV SLM-based Sigma7300 laser pattern generator, in Proceedings of SPIE 5377, Optical Microlithography XVII, vol. 5377 (2004), pp. 5377–10Google Scholar
  29. 29.
    U.B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, H. Sjoeberg, A high-end mask writer using a spatial light modulator, in Proceedings of SPIE 5721, MOEMS Display and Imaging Systems III, vol. 5721 (2005), pp. 5721–10Google Scholar
  30. 30.
    H.K. Lakner, P. Duerr, U. Dauderstaedt, W. Doleschal, J. Amelung, Design and fabrication of micromirror arrays for UV lithography, in Proceedings of SPIE 4561, MOEMS and Miniaturized Systems II, vol. 4561 (2001), pp. 4561–10Google Scholar
  31. 31.
    H. Martinsson, T. Sandstrom, A.J. Bleeker, J.D. Hintersteiner, Current status of optical maskless lithography. J. MicroNanolithograhy MEMS MOEMS 4, 011003-4–15 (2005)Google Scholar
  32. 32.
    J. Aman, H.A. Fosshaug, T. Hedqvist, J. Harkesjo, P. Hogfeldt, M. Jacobsson, A. Karawajczyk, J. Karlsson, M. Rosling, H.J. Sjoberg, Properties of a 248-nm DUV laser mask pattern generator for the 90-nm and 65-nm technology nodes, in Proceedings of SPIE 5256, 23rd Annual BACUS Symposium on Photomask Technology, vol. 5256 (2003), pp. 5256–11Google Scholar
  33. 33.
    J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513 (2009)CrossRefGoogle Scholar
  34. 34.
    A. Frölich, J. Fischer, T. Zebrowski, K. Busch, M. Wegener, Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25, 3588–3592 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Fischer, J.B. Mueller, A.S. Quick, J. Kaschke, C. Barner-Kowollik, M. Wegener, Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater. 3, 221–232 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Kaschke, M. Wegener, Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett. 40, 3986–3989 (2015)CrossRefGoogle Scholar
  37. 37.
    Z. Gan, Y. Cao, R.A. Evans, M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013)CrossRefGoogle Scholar
  38. 38.
    Z. Gan, M.D. Turner, M. Gu, Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Tan, R. Livengood, D. Shima, J. Notte, S. McVey, Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications. J. Vac. Sci. Technol. B 28, C6F15–C6F21 (2010)CrossRefGoogle Scholar
  40. 40.
    I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26, 1197–1276 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  42. 42.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Cui, Z. Liu, J. Li, T.H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, C. Gu, Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances. Light Sci. Appl. 4, e308 (2015)CrossRefGoogle Scholar
  44. 44.
    Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, N.X. Fang, Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018)CrossRefGoogle Scholar
  45. 45.
    B.R. Appleton, S. Tongay, M. Lemaitre, B. Gila, D. Hays, A. Scheuermann, J. Fridmann, Multi-ion beam lithography and processing studies. MRS Proc. 1354, mrss11-1354-ii03-05 (2011)Google Scholar
  46. 46.
    B. Gila, B.R. Appleton, J. Fridmann, P. Mazarov, J.E. Sanabia, S. Bauerdick, L. Bruchhaus, R. Mimura, R. Jede, First results from a multi-ion beam lithography and processing system at the University Of Florida. AIP Conf. Proc. 1336, 243–247 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama, Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 18, 3181–3184 (2000)CrossRefGoogle Scholar
  48. 48.
    M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, A. Passaseo, Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition. Adv. Opt. Mater. 2, 154–161 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, A. Passaseo, Programmable extreme chirality in the visible by helix-shaped metamaterial platform. Nano Lett. 16, 5823–5828 (2016)CrossRefGoogle Scholar
  50. 50.
    D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, L. Kuipers, Core–shell plasmonic nanohelices. ACS Photonics 4, 1858–1863 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Yan, S. Choi, K.R.V. Subramanian, I. Adesida, The effects of molecular weight on the exposure characteristics of poly(methylmethacrylate) developed at low temperatures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26, 2306–2310 (2008)Google Scholar
  52. 52.
    B. Cord, J. Yang, H. Duan, D.C. Joy, J. Klingfus, K.K. Berggren, Limiting factors in sub-10 nm scanning-electron-beam lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 2616–2621 (2009)CrossRefGoogle Scholar
  53. 53.
    L.E. Ocola, A. Stein, Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 3061–3065 (2006)CrossRefGoogle Scholar
  54. 54.
    J. Reinspach, M. Lindblom, O. von Hofsten, M. Bertilson, H.M. Hertz, A. Holmberg, Cold-developed electron-beam-patterned ZEP 7000 for fabrication of 13 nm nickel zone plates. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 2593–2596 (2009)CrossRefGoogle Scholar
  55. 55.
    T. Okada, J. Fujimori, M. Aida, M. Fujimura, T. Yoshizawa, M. Katsumura, T. Iida, Enhanced resolution and groove-width simulation in cold development of ZEP520A. J. Vac. Sci. Technol. B 29, 021604 (2011)CrossRefGoogle Scholar
  56. 56.
    J.K.W. Yang, K.K. Berggren, Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 25, 2025–2029 (2007)CrossRefGoogle Scholar
  57. 57.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)CrossRefGoogle Scholar
  58. 58.
    M.A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, F. Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl. Acad. Sci. 109, 12364 (2012)CrossRefGoogle Scholar
  59. 59.
    K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379 (2015)CrossRefGoogle Scholar
  60. 60.
    A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937 (2015)CrossRefGoogle Scholar
  61. 61.
    M.I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N.M. Litchinitser, High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015)CrossRefGoogle Scholar
  62. 62.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31 (2007)CrossRefGoogle Scholar
  63. 63.
    N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photonics 3, 157 (2009)CrossRefGoogle Scholar
  64. 64.
    R.C. Devlin, M. Khorasaninejad, W.T. Chen, J. Oh, F. Capasso, Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. 113, 10473–10478 (2016)CrossRefGoogle Scholar
  65. 65.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190 (2016)CrossRefGoogle Scholar
  66. 66.
    B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017)CrossRefGoogle Scholar
  67. 67.
    M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016)CrossRefGoogle Scholar
  68. 68.
    A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018)CrossRefGoogle Scholar
  69. 69.
    D. Xia, Z. Ku, S.C. Lee, S.R.J. Brueck, Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 23, 147–179 (2010)CrossRefGoogle Scholar
  70. 70.
    L. Wang, D. Fan, V.A. Guzenko, Y. Ekinci, Facile fabrication of high-resolution extreme ultraviolet interference lithography grating masks using footing strategy during electron beam writing. J. Vac. Sci. Technol. B 31, 06F602 (2013)CrossRefGoogle Scholar
  71. 71.
    R.H. French, H. Sewell, M.K. Yang, S. Peng, D.C. McCafferty, W. Qiu, R.C. Wheland, M.F. Lemon, L. Markoya, M.K. Crawford, Imaging of 32-nm 1:1 lines and spaces using 193-nm immersion interference lithography with second-generation immersion fluids to achieve a numerical aperture of 1.5 and ak 1 of 0.25. J. MicroNanolithograhy MEMS MOEMS 4, 031103-4–14 (2005)Google Scholar
  72. 72.
    Y. Ekinci, M. Vockenhuber, M. Hojeij, L. Wang, N. Mojarad, Evaluation of EUV resist performance with interference lithography towards 11 nm half-pitch and beyond, in Proceedings of SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, vol. 8679 (2013), pp. 867910-8679–11Google Scholar
  73. 73.
    T. Ito, S. Okazaki, Pushing the limits of lithography. Nature 406, 1027 (2000)CrossRefGoogle Scholar
  74. 74.
    U. Okoroanyanwu, Chemistry and Lithography (SPIE Press, 2010)Google Scholar
  75. 75.
    T. Hu, C.-K. Tseng, Y.H. Fu, Z. Xu, Y. Dong, S. Wang, K.H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, Y. Gu, Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018)CrossRefGoogle Scholar
  76. 76.
    S. Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Sci. 272, 85 (1996)Google Scholar
  77. 77.
    W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C.B. Murray, A. Alu, C.R. Kagan, Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces. Nano Lett. 15, 5254–5260 (2015)CrossRefGoogle Scholar
  78. 78.
    S.V. Makarov, V. Milichko, E.V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y.S. Kivshar, A.A. Zakhidov, Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728–735 (2017)CrossRefGoogle Scholar
  79. 79.
    X. Zhu, C. Vannahme, E. Højlund-Nielsen, N.A. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325 (2015)CrossRefGoogle Scholar
  80. 80.
    T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography and future patterning for semiconductor devices. J. MicroNanolithograhy MEMS MOEMS 10, 043008-10–8 (2011)Google Scholar
  81. 81.
    S. Ahn, M. Ganapathisubramanian, M. Miller, J. Yang, J. Choi, F. Xu, D.J. Resnick, S.V. Sreenivasan, Roll-to-roll nanopatterning using jet and flash imprint lithography, in Proceedings of SPIE 8323, Alternative Lithographic Technologies IV, vol. 8323 (2012), p. 83231L–8323–7Google Scholar
  82. 82.
    S.H. Ahn, L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009)CrossRefGoogle Scholar
  83. 83.
    S. Vignolini, N.A. Yufa, P.S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J.J. Baumberg, U. Steiner, A 3D optical metamaterial made by self-assembly. Adv. Mater. 24, OP23–OP27 (2011)Google Scholar
  84. 84.
    J.Y. Kim, H. Kim, B.H. Kim, T. Chang, J. Lim, H.M. Jin, J.H. Mun, Y.J. Choi, K. Chung, J. Shin, S. Fan, S.O. Kim, Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Commun. 7, 12911 (2016)CrossRefGoogle Scholar
  85. 85.
    A. Nemiroski, M. Gonidec, J.M. Fox, P. Jean-Remy, E. Turnage, G.M. Whitesides, Engineering shadows to fabricate optical metasurfaces. ACS Nano 8, 11061–11070 (2014)CrossRefGoogle Scholar
  86. 86.
    M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations