Material Basis

  • Xiangang LuoEmail author


The electromagnetic properties of materials determine the way of light–matter interaction. Traditional engineering optics (i.e., EO 1.0) relies on the natural occurring materials whose electromagnetic properties are greatly restricted by the molecules or atoms. When combined with traditional laws of reflection and refraction, the optical systems are often complex and bulky to perform a special function. Distinct from EO 1.0, the material basis of EO 2.0 not only includes the natural occurring materials but also recently emerging artificial materials, whose physical properties are engineered by assembling microscopic and nanoscopic structures in unusual combinations. In this chapter, the commonly used natural materials and some unique metamaterials, e.g., negative-index metamaterials, near-zero index metamaterials, ultra-high index metamaterials, and hyperbolic metamaterials are introduced.


Optical materials Plasmonic materials Phase-change materials Two-dimensional materials Metamaterials 


  1. 1.
    X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 0, 1804680 (2018)Google Scholar
  2. 2.
    D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)CrossRefGoogle Scholar
  3. 3.
    V.G. Veselago, E.E. Narimanov, The left hand of brightness: past, present and future of negative index materials. Nat. Mater. 5, 759–762 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)CrossRefGoogle Scholar
  6. 6.
    N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Luo, Subwavelength electromagnetics. Front. Optoelectron. 9, 138–150 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Pu, C. Wang, Y. Wang, X. Luo, Subwavelength electromagnetics below the diffraction limit. Acta Phys. Sin. 66, 144101 (2017)Google Scholar
  9. 9.
    S.M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Material platforms for optical metasurfaces. Nanophotonics 7, 959 (2018)CrossRefGoogle Scholar
  10. 10.
    S.A. Maier in Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
  11. 11.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRefGoogle Scholar
  12. 12.
    U. Guler, A. Boltasseva, V.M. Shalaev, Refractory plasmonics. Science 344, 263–264 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  14. 14.
    G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012)CrossRefGoogle Scholar
  15. 15.
    G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, A.C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, L. Dal Negro, Tunability of indium tin oxide materials for mid-infrared plasmonics applications. Opt. Mater. Express 7, 2727–2739 (2017)CrossRefGoogle Scholar
  17. 17.
    E. Feigenbaum, K. Diest, H.A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.-W. Huang, H.W.H. Lee, R. Sokhoyan, R.A. Pala, K. Thyagarajan, S. Han, D.P. Tsai, H.A. Atwater, Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)CrossRefGoogle Scholar
  20. 20.
    G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. 109, 8834–8838 (2012)CrossRefGoogle Scholar
  21. 21.
    G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1, 1090–1099 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Colburn, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, A. Majumdar, Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces. Opt. Mater. Express 8, 2330–2344 (2018)CrossRefGoogle Scholar
  23. 23.
    A.N. Pikhtin, A.D. Yas’kov, Dispersion of the refractive index in semiconductors with diamond and zinc-blend structures. Sov. Phys. Semicond. 12, 622–626 (1978)Google Scholar
  24. 24.
    A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354, 2472 (2016)Google Scholar
  25. 25.
    I. Staude, J. Schilling, Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190 (2016)CrossRefGoogle Scholar
  27. 27.
    R.C. Devlin, M. Khorasaninejad, W.T. Chen, J. Oh, F. Capasso, Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. (2016)Google Scholar
  28. 28.
    C.N. Berglund, H.J. Guggenheim, Electronic properties of VO2 near the semiconductor-metal transition. Phys. Rev. 185, 1022–1033 (1969)CrossRefGoogle Scholar
  29. 29.
    Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Raeis-Hosseini, J. Rho, metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 10, 1046 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Walia, C.M. Shah, P. Gutruf, H. Nili, D.R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram, Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 5, 1600829 (2017)CrossRefGoogle Scholar
  34. 34.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRefGoogle Scholar
  35. 35.
    M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu, Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev. 118, 6236–6296 (2018)CrossRefGoogle Scholar
  36. 36.
    A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419 (2013)CrossRefGoogle Scholar
  37. 37.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I.K.I. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  38. 38.
    F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)CrossRefGoogle Scholar
  39. 39.
    K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192 (2012)CrossRefGoogle Scholar
  40. 40.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRefGoogle Scholar
  41. 41.
    G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)CrossRefGoogle Scholar
  42. 42.
    G.W. Hanson, Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104, 084314 (2008)CrossRefGoogle Scholar
  43. 43.
    P.-Y. Chen, A. Alù, Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855–5863 (2011)CrossRefGoogle Scholar
  44. 44.
    Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.-M. Shih, J. Hone, T.F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90, 205422 (2014)CrossRefGoogle Scholar
  45. 45.
    B. Deng, R. Frisenda, C. Li, X. Chen, A. Castellanos-Gomez, F. Xia, Progress on black phosphorus photonics. Adv. Opt. Mater. 6, 1800365 (2018)CrossRefGoogle Scholar
  46. 46.
    X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRefGoogle Scholar
  48. 48.
    A.J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C.T. Ellis, N. Assefa, I. Chatzakis, T.L. Reinecke, J.G. Tischler, M.M. Fogler, J.H. Edgar, D.N. Basov, J.D. Caldwell, Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134 (2017)CrossRefGoogle Scholar
  49. 49.
    M. Tamagnone, A. Ambrosio, K. Chaudhary, L.A. Jauregui, P. Kim, W.L. Wilson, F. Capasso, Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4 (2018)Google Scholar
  50. 50.
    X. Lin, Y. Shen, I. Kaminer, H. Chen, M. Soljačić, Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials. Phys. Rev. A 94, 023836 (2016)CrossRefGoogle Scholar
  51. 51.
    W. Ma, P. Alonso-González, S. Li, A.Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee, R. Hillenbrand, Q. Bao, In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018)CrossRefGoogle Scholar
  52. 52.
    L. Dou, Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 5, 11165–11173 (2017)CrossRefGoogle Scholar
  53. 53.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014)CrossRefGoogle Scholar
  54. 54.
    H.S. Jung, N.-G. Park, Perovskite solar cells: from materials to devices. Small 11, 10–25 (2014)CrossRefGoogle Scholar
  55. 55.
    X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 1804680 (2018)Google Scholar
  56. 56.
    R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  57. 57.
    I. Liberal, N. Engheta, Near-zero refractive index photonics. Nat. Photonics 11, 149 (2017)CrossRefGoogle Scholar
  58. 58.
    B. Bai, Y. Svirko, J. Turunen, T. Vallius, Optical activity in planar chiral metamaterials: theoretical study. Phys. Rev. A 76, 023811 (2007)CrossRefGoogle Scholar
  59. 59.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)CrossRefGoogle Scholar
  60. 60.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  61. 61.
    H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)CrossRefGoogle Scholar
  62. 62.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  63. 63.
    X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)CrossRefGoogle Scholar
  64. 64.
    Y. Guo, M. Pu, X. Li, X. Ma, P. Gao, Y. Wang, X. Luo, Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. J. Phys. Condens. Matter 30, 144003 (2018)CrossRefGoogle Scholar
  65. 65.
    Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)CrossRefGoogle Scholar
  66. 66.
    A.V. Kildishev, E.E. Narimanov, Impedance-matched hyperlens. Opt. Lett. 32, 3432–3434 (2007)CrossRefGoogle Scholar
  67. 67.
    A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)CrossRefGoogle Scholar
  68. 68.
    Y. Guo, M. Pu, X. Ma, X. Li, X. Luo, Advances of dispersion-engineered metamaterials. Opto-Electron. Eng. 44, 3–22 (2017)Google Scholar
  69. 69.
    Y. Xiong, Z. Liu, C. Sun, X. Zhang, Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007)CrossRefGoogle Scholar
  70. 70.
    H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205–209 (2012)CrossRefGoogle Scholar
  71. 71.
    S.A. Ramakrishna, J.B. Pendry, M.C.K. Wiltshire, W.J. Stewart, Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003)CrossRefGoogle Scholar
  72. 72.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)CrossRefGoogle Scholar
  73. 73.
    C. Wang, P. Gao, X. Tao, Z. Zhao, M. Pu, P. Chen, X. Luo, Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl. Phys. Lett. 103, 031911 (2013)CrossRefGoogle Scholar
  74. 74.
    Z. Guo, Z.Y. Zhao, L.S. Yan, P. Gao, C.T. Wang, N. Yao, K.P. Liu, B. Jiang, X. Luo, Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films. Appl. Phys. Lett. 105, 141107 (2014)CrossRefGoogle Scholar
  75. 75.
    T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013)CrossRefGoogle Scholar
  76. 76.
    R. Maas, E. Verhagen, J. Parsons, A. Polman, Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials. ACS Photonics 1, 670–676 (2014)CrossRefGoogle Scholar
  77. 77.
    G. Ren, C. Wang, G. Yi, X. Tao, X. Luo, Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics 8, 1065–1072 (2013)CrossRefGoogle Scholar
  78. 78.
    L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)CrossRefGoogle Scholar
  79. 79.
    J. Sun, T. Xu, N.M. Litchinitser, Experimental demonstration of demagnifying hyperlens. Nano Lett. 16, 7905–7909 (2016)CrossRefGoogle Scholar
  80. 80.
    J. Pendry, A. Holden, W. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)CrossRefGoogle Scholar
  81. 81.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)CrossRefGoogle Scholar
  82. 82.
    D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRefGoogle Scholar
  83. 83.
    D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)CrossRefGoogle Scholar
  84. 84.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. USPEKHI 10, 509–514 (1968)CrossRefGoogle Scholar
  85. 85.
    G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, S. Linden, Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006)CrossRefGoogle Scholar
  86. 86.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008)CrossRefGoogle Scholar
  87. 87.
    L. Liu, H. Shi, X. Luo, X. Wei, C. Du, A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires. Appl. Phys. A 95, 563–566 (2009)CrossRefGoogle Scholar
  88. 88.
    J.T. Shen, P.B. Catrysse, S. Fan, Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 94, 197401 (2005)CrossRefGoogle Scholar
  89. 89.
    M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011)CrossRefGoogle Scholar
  90. 90.
    J. Sun, N.M. Litchinitser, J. Zhou, Indefinite by nature: from ultraviolet to terahertz. ACS Photonics 1, 293–303 (2014)CrossRefGoogle Scholar
  91. 91.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)CrossRefGoogle Scholar
  92. 92.
    X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 6, 450 (2012)CrossRefGoogle Scholar
  93. 93.
    T.U. Tumkur, L. Gu, J.K. Kitur, E.E. Narimanov, M.A. Noginov, Control of absorption with hyperbolic metamaterials. Appl. Phys. Lett. 100, 161103 (2012)CrossRefGoogle Scholar
  94. 94.
    L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations