Radiation Engineering and Optical Phased Array

  • Xiangang LuoEmail author


Radiation is a very important energy conversion process in engineering optics. Effective thermal radiation management can not only improve the efficiency of thermophotovoltaics but also realize passive radiative cooling, thermal cloak, and camouflage. Besides, light-emitting diode (LED) with small volume and high efficiency is poised to replace the traditional light bulb and liquid crystal display (LCD) in the next few decades. In addition, minimized micro-/nanolaser that can serve as coherent light sources in on-chip electro-photonic circuits can be widely applied in nanoscale applications. Finally, if the phase retardation of coherent emitters can be actively controlled in a compact manner, high-performance optical phased light detection and ranging will replace the traditional beam scanning technology based on mechanical steering. In this chapter, we give a detailed discussion about the radiation engineering technology and optical phased array.


Thermal radiations Thermophotovoltaics Light-emitting diodes Micro- and nanolasers Optical phased arrays 


  1. 1.
    W. Li, S. Fan, Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995–16021 (2018)CrossRefGoogle Scholar
  2. 2.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Karl, J.M.E. Glackin, M. Schubert, N.M. Kronenberg, G.A. Turnbull, I.D.W. Samuel, M.C. Gather, Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, R. Baets, Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 34, 1477–1479 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Ma, M. Pu, X. Li, Y. Guo, X. Luo, All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv. 2, 180023 (2019)Google Scholar
  8. 8.
    I. Celanovic, D. Perreault, J. Kassakian, Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005)CrossRefGoogle Scholar
  9. 9.
    X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)CrossRefGoogle Scholar
  10. 10.
    J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)CrossRefGoogle Scholar
  11. 11.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)CrossRefGoogle Scholar
  12. 12.
    J.H. Park, S.E. Han, P. Nagpal, D.J. Norris, Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photonics 3, 494–500 (2016)Google Scholar
  13. 13.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt. Express 21, 11618–11627 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Basu, Z.M. Zhang, C.J. Fu, Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009)CrossRefGoogle Scholar
  15. 15.
    J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621 (1999)CrossRefGoogle Scholar
  16. 16.
    X. Luo, Catenary Optics (Springer Singapore, 2019)Google Scholar
  17. 17.
    Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob, Broadband super-planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Liu, Z. Zhang, Near-field thermal radiation between metasurfaces. ACS Photonics 2, 1320–1326 (2015)Google Scholar
  19. 19.
    A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljacic, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, X. Luo, Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)CrossRefGoogle Scholar
  21. 21.
    D.M. Bierman, A. Lenert, W.R. Chan, B. Bhatia, I. Celanović, M. Soljačić, E.N. Wang, Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016)CrossRefGoogle Scholar
  22. 22.
    A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, X. Luo, Broadband metamaterial as an “invisible” radiative cooling coat. Opt. Commun. 407, 204–207 (2018)CrossRefGoogle Scholar
  25. 25.
    O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci, N. Kakevov, S. Balci, S. Olcum, S. Süzer, C. Kocabas, Graphene based adaptive thermal camouflage. Nano Lett. 18, 4541–4547 (2018)Google Scholar
  26. 26.
    H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234 (2012)CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63 (2016)Google Scholar
  29. 29.
    X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, E.H. Sargent, Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10, 253 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Zhao, J.D.A. Ng, R.H. Friend, Z.-K. Tan, Opportunities and challenges in perovskite light-emitting devices. ACS Photonics 5, 3866–3875 (2018)CrossRefGoogle Scholar
  32. 32.
    Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T.C. Jellicoe, F. de la Peña, S. Hou, C. Ducati, F. Gao, R.H. Friend, N.C. Greenham, Z.-K. Tan, Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, T.-W. Lee, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018)CrossRefGoogle Scholar
  36. 36.
    K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, Z. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018)CrossRefGoogle Scholar
  37. 37.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  38. 38.
    R.A. Meyer, Optical beam steering using a multichannel lithium tantalate crystal. Appl. Opt. 11, 613–616 (1972)CrossRefGoogle Scholar
  39. 39.
    P.F. McManamon, P.J. Bos, M.J. Escuti, J. Heikenfeld, S. Serati, H. Xie, E.A. Watson, A review of phased array steering for narrow-band electrooptical systems. Proc. IEEE 97, 1078–1096 (2009)CrossRefGoogle Scholar
  40. 40.
    X. Zhao, C. Liu, D. Zhang, Y. Luo, Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering. Appl. Opt. 52, 7109–7116 (2013)CrossRefGoogle Scholar
  41. 41.
    D.R. Wight, J.M. Heaton, B.T. Hughes, J.C.H. Birbeck, K.P. Hilton, D.J. Taylor, Novel phased array optical scanning device implemented using GaAs/AlGaAs technology. Appl. Phys. Lett. 59, 899–901 (1991)CrossRefGoogle Scholar
  42. 42.
    F. Vasey, F.K. Reinhart, R. Houdré, J.M. Stauffer, Spatial optical beam steering with an AlGaAs integrated phased array. Appl. Opt. 32, 3220–3232 (1993)CrossRefGoogle Scholar
  43. 43.
    K. Van Acoleyen, H. Rogier, R. Baets, Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express 18, 13655–13660 (2010)CrossRefGoogle Scholar
  44. 44.
    J.K. Doylend, M.J.R. Heck, J.T. Bovington, J.D. Peters, L.A. Coldren, J.E. Bowers, Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 19, 21595–21604 (2011)CrossRefGoogle Scholar
  45. 45.
    K. Van Acoleyen, K. Komorowska, W. Bogaerts, R. Baets, One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator. J. Light. Technol. 29, 3500–3505 (2011)CrossRefGoogle Scholar
  46. 46.
    C.T. DeRose, R.D. Kekatpure, D.C. Trotter, A. Starbuck, J.R. Wendt, A. Yaacobi, M.R. Watts, U. Chettiar, N. Engheta, P.S. Davids, Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt. Express 21, 5198–5208 (2013)CrossRefGoogle Scholar
  47. 47.
    D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, R.T. Chen, Corrugated waveguide-based optical phased array with crosstalk suppression. IEEE Photon. Technol. Lett. 26, 991–994 (2014)CrossRefGoogle Scholar
  48. 48.
    D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, R.T. Chen, On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett. 39, 941–944 (2014)CrossRefGoogle Scholar
  49. 49.
    H. Abediasl, H. Hashemi, Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express 23, 6509–6519 (2015)CrossRefGoogle Scholar
  50. 50.
    B.A. Nia, L. Yousefi, M. Shahabadi, Integrated optical-phased array nanoantenna system using a plasmonic rotman lens. J. Light. Technol. 34, 2118–2126 (2016)CrossRefGoogle Scholar
  51. 51.
    W.S. Rabinovich, P.G. Goetz, M.W. Pruessner, R. Mahon, M.S. Ferraro, D. Park, E.F. Fleet, M.J. DePrenger, Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array. Opt. Eng. 55, 111603 (2016)Google Scholar
  52. 52.
    D.N. Hutchison, J. Sun, J.K. Doylend, R. Kumar, J. Heck, W. Kim, C.T. Phare, A. Feshali, H. Rong, High-resolution aliasing-free optical beam steering. Optica 3, 887–890 (2016)CrossRefGoogle Scholar
  53. 53.
    J. Notaros, C.V. Poulton, M.J. Byrd, M. Raval, M.R. Watts, Integrated optical phased arrays for quasi-Bessel-beam generation. Opt. Lett. 42, 3510–3513 (2017)CrossRefGoogle Scholar
  54. 54.
    C.V. Poulton, M.J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, M. Watts, Large-scale visible and infrared optical phased arrays in silicon nitride. Conference on lasers and electro-optics, OSA technical digest (Online) (Optical Society of America, 2017), p. STh1 M.1Google Scholar
  55. 55.
    C.V. Poulton, A. Yaacobi, D.B. Cole, M.J. Byrd, M. Raval, D. Vermeulen, M.R. Watts, Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091–4094 (2017)CrossRefGoogle Scholar
  56. 56.
    C.V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, M.R. Watts, Lens-free chip-to-chip free-space laser communication link with a silicon photonics optical phased array. Frontiers in Optics 2017, OSA technical digest (Online) (Optical Society of America, 2017), p. FW5A.3Google Scholar
  57. 57.
    M. Raval, C.V. Poulton, M.R. Watts, Unidirectional waveguide grating antennas with uniform emission for optical phased arrays. Opt. Lett. 42, 2563–2566 (2017)CrossRefGoogle Scholar
  58. 58.
    J. Sun, E. Timurdogan, A. Yaacobi, E.S. Hosseini, M.R. Watts, Large-scale nanophotonic phased array. Nature 493, 195–199 (2013)CrossRefGoogle Scholar
  59. 59.
    R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–250 (1972)Google Scholar
  60. 60.
    F. Aflatouni, B. Abiri, A. Rekhi, A. Hajimiri, Nanophotonic projection system. Opt. Express 23, 21012–21022 (2015)CrossRefGoogle Scholar
  61. 61.
    A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, M.R. Watts, Integrated phased array for wide-angle beam steering. Opt. Lett. 39, 4575–4578 (2014)CrossRefGoogle Scholar
  62. 62.
    H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815–6820 (2005)CrossRefGoogle Scholar
  63. 63.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)CrossRefGoogle Scholar
  64. 64.
    Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon. 3, 2022–2029 (2016)CrossRefGoogle Scholar
  65. 65.
    M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361–4378 (2017)CrossRefGoogle Scholar
  66. 66.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)CrossRefGoogle Scholar
  67. 67.
    M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, X. Luo, Broadband anomalous reflection based on low-Q gradient meta-surface. AIP Adv. 3, 052136 (2013)CrossRefGoogle Scholar
  68. 68.
    Y.-W. Huang, H.W.H. Lee, R. Sokhoyan, R.A. Pala, K. Thyagarajan, S. Han, D.P. Tsai, H.A. Atwater, Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016)CrossRefGoogle Scholar
  69. 69.
    P.P. Iyer, M. Pendharkar, J.A. Schuller, Electrically reconfigurable metasurfaces using heterojunction resonators. Adv. Opt. Mater. 4, 1582–1588 (2016)CrossRefGoogle Scholar
  70. 70.
    Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016)CrossRefGoogle Scholar
  71. 71.
    C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, J. Tian, Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces. Adv. Opt. Mater. 6, 1701047 (2018)Google Scholar
  72. 72.
    M.C. Sherrott, P.W.C. Hon, K.T. Fountaine, J.C. Garcia, S.M. Ponti, V.W. Brar, L.A. Sweatlock, H.A. Atwater, Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017)CrossRefGoogle Scholar
  73. 73.
    G. Kafaie Shirmanesh, R. Sokhoyan, R.A. Pala, H.A. Atwater, Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018)Google Scholar
  74. 74.
    K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008)CrossRefGoogle Scholar
  75. 75.
    M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)CrossRefGoogle Scholar
  76. 76.
    C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photon. Rev. 10, 986–994 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations