Torus Orbifolds with Two Fixed Points

  • Alastair DarbyEmail author
  • Shintaro Kuroki
  • Jongbaek Song
Conference paper
Part of the Trends in Mathematics book series (TM)


The main objects of this paper are torus orbifolds that have exactly two fixed points. We study the equivariant topological type of these orbifolds and consider when we can use the results of (Darby et al., Equivariant cohomology of torus orbifolds, arXiv:1809.03678 [8]) to compute its integral equivariant cohomology, in terms of generators and relations, coming from the corresponding orbifold torus graph.


Orbifold Torus action Torus orbifold Equivariant cohomology Face ring 

1991 Mathematics Subject Classification

Principal: 55N32 Secondly: 57R18 13F55 


  1. 1.
    A. Adem, J. Leida, Y. Ruan, Orbifolds and Stringy Topology, Cambridge tracts in mathematics, vol. 171 (Cambridge University, Cambridge, 2007)Google Scholar
  2. 2.
    A. AlAmrani, Complex K-theory of weighted projective spaces. J. of Pure and Appl. Alg. 93, 113–127 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.A. Armstrong, The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Philos. Soc. 64, 299–301 (1968)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Bahri, M. Franz, N. Ray, The equivariant cohomology ring of weighted projective space. Math. Proc. Camb. Philos. Soc. 146(2), 395–405 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Bahri, M. Franz, N. Ray, Weighted projective spaces and iterated Thom spaces. Osaka J. Math. 51, 89–121 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Bahri, S. Sarkar, J. Song, On the integral cohomology ring of toric orbifolds and singular toric varieties. Algebr. Geom. Topol. 17(6), 3779–3810 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Buchstaber, T. Panov, Toric Topology, Mathematical surveys and monographs, vol. 204. (American Mathematical Society, Providence, 2015)Google Scholar
  8. 8.
    A. Darby, S. Kuroki, J. Song, Equivariant cohomology of torus orbifolds, arXiv:1809.03678
  9. 9.
    M. Davis, When are two Coxeter orbifolds diffeomorphic? Michigan Math. J. 63, 401–421 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Davis, T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62, 417–451 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Franz, Describing toric varieties and their equivariant cohomology. Colloq. Math. 121, 1–16 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Galaz-Garcia, M. Kerin, M. Radeschi, M. Wiemeler, Torus orbifolds, slice-maximal torus actions and rational ellipticity. Int. Math. Res. Not. (2017).;, preprint version: arXiv:1404.3903MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. Guillemin, C. Zara, One-skeleta, Betti numbers, and equivariant cohomology. Duke Math. J. 107, 283–349 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Hattori, M. Masuda, Theory of Multi-fans. Osaka. J. Math. 40, 1–68 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    T. Kawasaki, Cohomology of twisted projective spaces and lens complexes. Math. Ann. 206, 243–248 (1973)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Maeda, M. Masuda, T. Panov, Torus graphs and simplicial posets. Adv. Math. 212, 458–483 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Poddar, S. Sarkar, On Quasitoric Orbifolds. Osaka J. Math. 47, 1055–1076 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Alastair Darby
    • 1
    Email author
  • Shintaro Kuroki
    • 2
  • Jongbaek Song
    • 3
  1. 1.Department of Mathematical SciencesXi’an Jiaotong-Liverpool UniversitySuzhouChina
  2. 2.Department of Applied MathematicsOkayama University of ScienceOkayamaJapan
  3. 3.Department of Mathematical SciencesKAISTDaejeonRepublic of Korea

Personalised recommendations