Advertisement

Synthesis of Poly(aromatic)s II: Enzyme-Model Complexes as Catalyst

  • Hideyuki HigashimuraEmail author
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

This chapter deals with oxidative polymerization of aromatic monomers catalyzed by enzyme-model complexes to produce poly(aromatic)s. The enzyme-model complexes include Fe/porphyrin complexes and Fe/N,N′-bis(salicylidene)ethylenediamine complexes as Fe-containing peroxidase-models, Cu complexes having three nitrogen coordination atoms as Cu-containing monooxygenase models, and multinuclear Cu complexes as Cu-containing oxidase models. By using the enzyme-model complex catalysts, the aromatic monomers such as phenols, anilines, and pyrroles can be polymerized with H2O2 or O2 as oxidants at ordinary temperatures in environmentally benign manners. The obtained poly(aromatic)s like polyphenols, poly(phenylene oxide)s, polyanilines, and polypyrroles possess excellent characteristics in mechanical strength, heat-resistance, and electric property. Enzyme-model catalysts have the following advantages in comparison with enzyme catalysts: (1) lower cost that is important in practical use, (2) applicability in various reaction conditions and monomers, and (3) possibility to express unique functions that have not seen even in enzymes. Hence, oxidative polymerization of aromatic monomers by enzyme-model complex catalysts would be expected as one of the new synthetic methods for advanced materials in green polymer chemistry.

Keywords

Oxidative polymerization Enzyme model Peroxidase model Tyrosinase model Phenol Aniline Poly(aromatic) Polyphenol Poly(phenylene oxide) Polyaniline 

References

  1. 1.
    Higashimura H, Kobayashi S (2016) Oxidative polymerization. In: Encyclopedia of polymer science and technology, 4th edn. Wiley, New York, pp 1–37Google Scholar
  2. 2.
    Shoda S, Uyama H, Kadokawa J et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413CrossRefGoogle Scholar
  3. 3.
    Huang X, Groves JT (2018) Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem Rev 118:2491–2553CrossRefGoogle Scholar
  4. 4.
    Quist DA, Diaz DE, Liu JJ et al (2017) Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 22:253–288CrossRefGoogle Scholar
  5. 5.
    Kitajima N, Moro-oka Y (1994) Copper-dioxygen complexes. Inorganic and bioinorganic perspectives. Chem Rev 94:737–757CrossRefGoogle Scholar
  6. 6.
    Mirica LM, Vance M, Rudd DJ et al (2005) Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308:1890–1892CrossRefGoogle Scholar
  7. 7.
    Akkara JA, Wang J, Yang D-P et al (2000) Hematin-catalyzed polymerization of phenol compounds. Macromolecules 33:2377–2382CrossRefGoogle Scholar
  8. 8.
    Kohri M, Fukushima H, Taniguchi T et al (2010) Synthesis of polyarbutin by oxidative polymerization using PEGylated hematin as a biomimetic catalyst. Polym J 42:952–955CrossRefGoogle Scholar
  9. 9.
    Wnag P, Martin BD, Paride S et al (1995) Multienzymic synthesis of poly(hydroquinone) for use as a redox polymer. J Am Chem Soc 117:12885–12886CrossRefGoogle Scholar
  10. 10.
    Liu W, Cholli AL, Nagarajan R et al (1999) The role of template in the enzymatic synthesis of conducting polyaniline. J Am Chem Soc 121:11345–11355CrossRefGoogle Scholar
  11. 11.
    Roy S, Nagarajan R, Bruno F et al (2001) A hinged iron porphyrin catalyst tailored for water soluble electroactive polymer synthesis. Proc ACS Div PMSE 85:202–203Google Scholar
  12. 12.
    Sahoo SK, Nagarajan R, Roy S et al (2004) An enzymatically synthesized polyaniline: a solid-state NMR study. Macromolecules 37:4130–4138CrossRefGoogle Scholar
  13. 13.
    Šmejkalová D, Piccolo A, Spiteller M (2006) Oligomerization of humic phenolic monomers by oxidative coupling under biomimetic catalysis. Environ Sci Technol 40:6955–6962CrossRefGoogle Scholar
  14. 14.
    Ravichandran S, Nagarajan S, Kokil A et al (2012) Micellar nanoreactors for hematin catalyzed synthesis of electrically conducting polypyrrole. Langmuir 28:13380–13386CrossRefGoogle Scholar
  15. 15.
    Terahara A, Higashimura H (2011) Manufacture of phenol polymers. Japanese Patent 3596038, 4 Aug 1994 for priority applicationGoogle Scholar
  16. 16.
    Uyama H, Kurioka H, Kaneko I et al (1994) Synthesis of a new family of phenol resin by enzymatic oxidative polymerization. Chem Lett 23:423–426CrossRefGoogle Scholar
  17. 17.
    Tonami H, Uyama H, Oguchi T et al (1999) Synthesis of a soluble polyphenol by oxidative polymerization of bisphenol-A using iron-salen complex as catalyst. Polym Bull 42:125–129CrossRefGoogle Scholar
  18. 18.
    Fukuoka T, Uyama H, Kobayashi S (2003) Synthesis of ultrahigh molecular weight polyphenols by oxidative coupling. Macromolecules 36:8213–8215CrossRefGoogle Scholar
  19. 19.
    Tonami H, Uyama H, Kobayashi S et al (1999) Oxidative polymerization of 2,6-disubstituted phenols catalyzed by iron-salen complex. J Macromol Sci Pure Appl Chem A36:719–730CrossRefGoogle Scholar
  20. 20.
    Ikeda R, Tanaka H, Uyama H et al (2000) Oxidative polymerization of 2,6-difluorophenol to crystalline poly(2,6-difluoro-1,4-phenylene oxide). Macromolecules 33:6648–6652CrossRefGoogle Scholar
  21. 21.
    Fukuoka T, Uyama H, Kobayashi S (2004) Polymerization of polyfunctional macromolecules: synthesis of a new class of high molecular weight poly(amino acid)s by oxidative coupling of phenol-containing precursor polymers. Biomacromolecules 5:977–983CrossRefGoogle Scholar
  22. 22.
    Tsujimoto T, Ikeda R, Uyama H et al (2001) Crosslinkable polyphenols from urushiol analogues. Macromol Chem Phys 202:3420–3425CrossRefGoogle Scholar
  23. 23.
    Tsujimoto T, Uyama H, Kobayashi S (2004) Synthesis and curing behaviors of cross-linkable polynaphthols from renewable resources: preparation of artificial urushi. Macromolecules 37:1777–1782CrossRefGoogle Scholar
  24. 24.
    Ikeda R, Tanaka H, Uyama H et al (2000) A new crosslinkable polyphenol from a renewable resource. Macromol Rapid Commun 21:496–499CrossRefGoogle Scholar
  25. 25.
    Ikeda R, Tanaka H, Uyama H et al (2002) Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid. Polymer 43:3475–3481CrossRefGoogle Scholar
  26. 26.
    Otsuka T, Fujikawa S, Yamane H et al (2017) Green polymer chemistry: the biomimetic oxidative polymerization of cardanol for a synthetic approach to ‘artificial urushi’. Polym J 49:335–343CrossRefGoogle Scholar
  27. 27.
    Hay AS, Blanchard HS, Endres GF et al (1959) Polymerization by oxidative coupling. J Am Chem Soc 81:6335–6336CrossRefGoogle Scholar
  28. 28.
    Hay AS (1998) Polymerization by oxidative coupling: discovery and commercialization of PPO and Noryl resins. J Polym Sci A Polym Chem 36:505–517CrossRefGoogle Scholar
  29. 29.
    Davin LB, Wang HB, Crowell AL et al (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366CrossRefGoogle Scholar
  30. 30.
    Mahadevan V, Hou Z, Cole AP et al (1997) Irreversible reduction of dioxygen by simple peralkylated diamine-copper(I) complexes: characterization and thermal stability of a [Cu2(μ-O)2]2+ core. J Am Chem Soc 119:11996–11997CrossRefGoogle Scholar
  31. 31.
    Valoti M, Sipe HJ Jr, Sgaragli G et al (1989) Free radical intermediates during peroxidase oxidation of 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, and related phenol compounds. Arch Biochem Biophys 269:423–432CrossRefGoogle Scholar
  32. 32.
    Kitajima N, Fujisawa K, Fujimoto C et al (1992) A new model for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the μ-η22-peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R= iPr and Ph). J Am Chem Soc 114:1277–1291CrossRefGoogle Scholar
  33. 33.
    Hay AS, Endres GF (1965) Polymerization by oxidative coupling. VI. Oxidation of o-cresol. J Polym Sci B Polym Lett 3:887–889CrossRefGoogle Scholar
  34. 34.
    Higashimura H, Fujisawa K, Moro-oka Y et al (1998) Highly regioselective oxidative polymerization of 4-phenoxyphenol to poly(1,4-phenylene oxide) catalyzed by tyrosinase model complexes. J Am Chem Soc 120:8529–8530CrossRefGoogle Scholar
  35. 35.
    Higashimura H, Kubota M, Shiga A (2000) “Radical-controlled” oxidative polymerization of 4-phenoxyphenol by a tyrosinase model complex catalyst to poly(1,4-phenylene oxide). Macromolecules 33:1986–1995CrossRefGoogle Scholar
  36. 36.
    van Dort HM, Hoefs CAM, Magré EP et al (1968) Poly-p-phenylene oxide. Eur Polym J 4:275–287CrossRefGoogle Scholar
  37. 37.
    Mijs WJ, van Lohuizen OE, Bussink J et al (1967) The catalytic oxidation of 4-aryloxyphenols. Tetrahedron 23:2253–2264CrossRefGoogle Scholar
  38. 38.
    Fujisawa K, Iwata Y, Kitajima N et al (1999) Synthesis, structure and reactivity of phenoxo copper(II) complexes, Cu(OAr)(HB(3,5-Pri 2pz)3) (Ar= C6H4-4-F, 2,6-Me2C6H3, 2,6-But 2C6H3). Chem Lett 28:739–740CrossRefGoogle Scholar
  39. 39.
    Halfen JA, Mahapatra S, Wilkinson EC et al (1996) Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex. Science 271:1397–1400CrossRefGoogle Scholar
  40. 40.
    Mahapatra S, Halfen JA, Wilkinson EC et al (1994) Modeling copper-dioxygen reactivity in proteins: aliphatic C-H bond activation by a new dicopper(II)-peroxo complex. J Am Chem Soc 116:9785–9786CrossRefGoogle Scholar
  41. 41.
    Higashimura H, Fujisawa K, Kubota M et al (2005) “Radical-controlled” oxidative polymerization of phenol: comparison with that of 4-phenoxyphenol. J Polym Sci A Polym Chem 43:1955–1962CrossRefGoogle Scholar
  42. 42.
    Higashimura H, Fujisawa K, Namekawa S et al (2000) Coupling selectivity in the radical-controlled oxidative polymerization of 4-phenoxyphenol catalyzed by (1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II) complex. J Polym Sci A Polym Chem 38:4792–4804CrossRefGoogle Scholar
  43. 43.
    Higashimura H, Fujisawa K, Moro-oka Y et al (2000) “Radical-controlled” oxidative polymerization of phenols. Substituent effect of phenol monomers on the reaction rate. Polym Adv Tech 11:733–738CrossRefGoogle Scholar
  44. 44.
    Koch W, Risse W, Heitz W (1985) Radical ions as chain carriers in polymerization reactions. Makromol Chem Suppl 12:105–123CrossRefGoogle Scholar
  45. 45.
    Higashimura H, Fujisawa K, Moro-oka Y et al (2000) “Radical-controlled” oxidative polymerization of o-cresol catalyzed by μ-η22-peroxo dicopper(II) complex. Appl Catal A General 194–195:427–433CrossRefGoogle Scholar
  46. 46.
    Higashimura H, Fujisawa K, Moro-oka Y et al (2000) “Radical-controlled” oxidative polymerization of m-cresol catalyzed by μ-η22-peroxo dicopper(II) complex. J Mol Catal A Chem 155:201–207CrossRefGoogle Scholar
  47. 47.
    Higashimura H, Fujisawa K, Moro-oka Y et al (2000) New crystalline polymers: poly(2,5-dialkyl-1,4-phenylene oxide)s. Macromol Rapid Commun 21:1121–1124CrossRefGoogle Scholar
  48. 48.
    Cheng SZD, Wunderlich B (1987) Glass transition and melting behavior of poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules 20:1630–1637CrossRefGoogle Scholar
  49. 49.
    Oyaizu K, Kumaki Y, Saito K et al (2000) First synthesis of high molecular weight poly(2,6-difluoro-1,4-phenylene oxide) by oxidative polymerization. Macromolecules 33:5766–5769CrossRefGoogle Scholar
  50. 50.
    Dias HVR, Wang X, Rajapakse RMG et al (2006) A mild copper catalyzed route to conducting polyaniline. Chem Commun 9:976–978CrossRefGoogle Scholar
  51. 51.
    Kodera M, Katayama K, Tachi Y et al (1999) Crystal structure and reversible O2-binding of a room temperature stable μ-η22-peroxodicopper(II) complex of a sterically hindered hexapyridine dinucleating ligand. J Am Chem Soc 121:11006–11007CrossRefGoogle Scholar
  52. 52.
    Higashimura H, Kubota M, Shiga A et al (2000) “Radical-controlled” oxidative polymerization of 4-phenoxyphenol catalyzed by a dicopper complex of a dinucleating ligand. J Mol Catal A Chem 161:233–237CrossRefGoogle Scholar
  53. 53.
    de Oliveira JAF, da Silva MP, de Souza B et al (2016) Dopamine polymerization promoted by a catecholase biomimetic CuII(μ-OH)CuII complex containing a triazine-based ligand. Dalton Trans 45:15294–15297CrossRefGoogle Scholar
  54. 54.
    Wu J, Hou H-W, Guo Y-X et al (2009) Construction of two discrete molecular high-nuclearity copper(II) complexes as heterogeneous catalysts for oxidative coupling polymerization of 2,6-dimethylphenol. Eur J Inorg Chem 2009(19):2796–2803CrossRefGoogle Scholar
  55. 55.
    Yamamoto K, Kawana Y, Tsuji M et al (2007) Additive-free synthesis of poly(phenylene oxide): aerobic oxidative polymerization in a base-condensed dendrimer capsule. J Am Chem Soc 129:9256–9257CrossRefGoogle Scholar
  56. 56.
    Gu C, Xiong K, Shentu B et al (2010) Catalytic Cu(II)-amine terminated poly(amidoamine) dendrimer complexes for aerobic oxidative polymerization to form poly(2,6-dimethyl-1,4-phenylene oxide) in water. Macromolecules 43:1695–1698CrossRefGoogle Scholar
  57. 57.
    Xiao B, Hou H, Fan Y (2007) Catalytic applications of CuII-containing MOFs based on N-heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol. J Org Chem 692:2014–2020CrossRefGoogle Scholar
  58. 58.
    Mu Y, Fu J, Song Y et al (2011) Hydrothermal syntheses of metal–organic frameworks constructed from aromatic polycarboxylate and 4,4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl. Cryst Growth Des 11:2183–2193CrossRefGoogle Scholar
  59. 59.
    Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28:1015–1048CrossRefGoogle Scholar
  60. 60.
    Saito K, Tago T, Masuyama T et al (2004) Oxidative polymerization of 2,6-dimethylphenol to form poly(2,6- dimethyl-1,4-phenylene oxide) in water. Angew Chem Int Ed 43:730–733CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Okayama University of ScienceOkayamaJapan

Personalised recommendations