Advertisement

Decontamination Efficacy and Principles of Electrolyzed Water

  • Tian DingEmail author
  • Xinyu Liao
Chapter

Abstract

Electrolyzed water (EW) is a novel bactericide in the food industry, which has received increasing attention. It has been shown to be an effective microorganism inactivation agent without bringing significant environmental hazard. EW parameters and microorganism properties can greatly influence the decontamination efficacy of EW. This chapter aims to review the influencing factors on microbial decontamination of EW. In addition, the mechanisms underlying the inactivation effect of EW on microbes were summarized. Apart from the lethal effect, the potential actions of EW on physiological states of microbes were also discussed. The extended applications of EW on spore inactivation and microbial toxin degradation were covered in the last part of this chapter.

Keywords

Electrolyzed water (EW) Efficacy Inactivation mechanism Influencing factors Microbial toxins 

References

  1. Abadias M, Usall J, Oliveira M et al (2008) Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int J Food Microbiol 123(1–2):151–158PubMedPubMedCentralCrossRefGoogle Scholar
  2. Afari GK, Hung YC (2018a) Detection and verification of the viable but nonculturable (VBNC) state of Escherichia coli O157:H7 and Listeria monocytogenes using flow cytometry and standard plating. J Food Sci 83(7):1913–1920PubMedCrossRefGoogle Scholar
  3. Afari GK, Hung YC (2018b) A meta-analysis on the effectiveness of electrolyzed water treatments in reducing foodborne pathogens on different foods. Food Control 93:150–164CrossRefGoogle Scholar
  4. Arevalos-Sánchez M, Regalado C, Martin SE, Domínguez-Domínguez J, García-Almendárez BE (2012) Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 24(1–2):116–122CrossRefGoogle Scholar
  5. Arevalos-Sánchez M, Regalado C, Martin SE et al (2013) Effect of neutral electrolyzed water on lux-tagged Listeria monocytogenes EGDe biofilms adhered to stainless steel and visualization with destructive and non-destructive microscopy techniques. Food Control 34(2):472–477CrossRefGoogle Scholar
  6. Ayebah B, Hung YC (2005) Electrolyzed water and its corrosiveness on various surface materials commonly found in food processing facilities. J Food Process Eng 28(3):247–264CrossRefGoogle Scholar
  7. Ayebah B, Hung YC, Frank JF (2005) Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. J Food Protect 68(7):1375–1380CrossRefGoogle Scholar
  8. Ayebah B, Hung YC, Kim C et al (2006) Efficacy of electrolyzed water in the inactivation of planktonic and biofilm Listeria monocytogenes in the presence of organic matter. J Food Prot 69(9):2143–2150PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12(1):63PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cao W, Zhu ZW, Shi ZX et al (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130(2):88–93PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen JJ, Deng SG, Lin X et al (2014) Germicidal efficacy of neutral electrolyzed water against the apparatus for the production of aquatic products. Sci Tech Food Ind 1(35):160–163Google Scholar
  12. Deza MA, Araujo M, Garrido MJ (2003) Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Lett Appl Microbiol 37(6):482–487PubMedCrossRefPubMedCentralGoogle Scholar
  13. Deza MA, Araujo M, Garrido MJ (2005) Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Lett Appl Microbiol 40(5):341–346PubMedCrossRefGoogle Scholar
  14. Deza MA, Araujo M, Garrido MJ (2007) Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards. J Food Protect 70(5):1070Google Scholar
  15. Ding T, Rahman SME, Oh D (2011) Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control 22(2):318–322CrossRefGoogle Scholar
  16. Ding T, Xuan X, Li J et al (2016) Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control 60:505–510CrossRefGoogle Scholar
  17. Duan D, Liu G, Yao P et al (2016) The effects of organic compounds on inactivation efficacy of Artemia salina by neutral electrolyzed water. Ocean Eng 125:31–37CrossRefGoogle Scholar
  18. Escobedo-González R, Méndez-Albores A, Villarreal-Barajas T et al (2016) A theoretical study of 8-chloro-9-hydroxy-aflatoxin B1, the conversion product of aflatoxin B1 by neutral electrolyzed water. Toxins 8(7):225PubMedCentralCrossRefPubMedGoogle Scholar
  19. Fabrizio KA, Cutter CN (2003) Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes. J Food Protect 66(8):1379–1384CrossRefGoogle Scholar
  20. Fan S, Zhang F, Liu S et al (2013) Removal of aflatoxin B1 in edible plant oils by oscillating treatment with alkaline electrolysed water. Food Chem 141(3):3118–3123PubMedCrossRefGoogle Scholar
  21. Forghani F, Park J, Oh D (2015) Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol 48:28–34PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gao X, Liu Z, Li X et al (2008) Sterilization mechanism and application of strong acidic electrolyzed water. Chin Agricult Sci Bull 24(7):393–399Google Scholar
  23. Guentzel JL, Lam KL, Callan MA et al (2008) Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol 25(1):36–41PubMedCrossRefPubMedCentralGoogle Scholar
  24. Han Q, Song X, Zhang Z et al (2017) Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8Google Scholar
  25. Han D, Hung YC, Wang L (2018a) Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiol 73:227–236PubMedCrossRefGoogle Scholar
  26. Han D, Hung YC, Bratcher CL et al (2018b) Formation of sublethally injured Yersinia enterocolitica, Escherichia coli O157:H7, and Salmonella enterica serovar enteritidis cells after neutral electrolyzed oxidizing water treatments. Appl Environ Microbiol 84(17):e01066–18Google Scholar
  27. Hao J, Wu T, Li H et al (2017) Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of slightly and strongly acidic electrolyzed water. Food Bioprocess Technol 10(1):155–164CrossRefGoogle Scholar
  28. Hricova D, Stephan R, Zweifel C (2008) Electrolyzed water and its application in the food industry. J Food Protect 71(9):1934–1947CrossRefGoogle Scholar
  29. Huang Y, Hung Y, Hsu S et al (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345CrossRefGoogle Scholar
  30. Hussain MS, Kwon M et al (2018) Effect of electrolyzed water on the disinfection of bacillus cereus biofilms: the mechanism of enhanced resistance of sessile cells in the biofilm matrix. J Food Protect 81(5):860–869CrossRefGoogle Scholar
  31. Izumi H, Inoue A (2018) Viability of sublethally injured coliform bacteria on fresh-cut cabbage stored in high CO2 atmospheres following rinsing with electrolyzed water. Int J Food Microbiol 266:207–212PubMedCrossRefPubMedCentralGoogle Scholar
  32. Jardon-Xicotencatl S, Díaz-Torres R, Marroquín-Cardona A et al (2015) Detoxification of aflatoxin-contaminated maize by neutral electrolyzed oxidizing water. Toxins 7(10):4294–4314PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kim C, Hung YC, Bracett RE (2000a) Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Protect 63(1):19–24CrossRefGoogle Scholar
  34. Kim C, Hung YC, Brackett RE (2000b) Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61(2–3):199–207PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kim C, Hung YC, Brackett, RE et al (2001) Inactivation of Listeria monocytogenes biofilms by electrolyzed oxidizing water. J Food Process Pres 25(2):91–100CrossRefGoogle Scholar
  36. Koide S, Takeda JI, Shi J et al (2009) Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control 20(3):294–297CrossRefGoogle Scholar
  37. Koide S, Shitanda D, Note M et al (2011) Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot. Food Control 22(3–4):452–456CrossRefGoogle Scholar
  38. Koseki S, Yoshida K, Isobe S et al (2001) Decontamination of lettuce using acidic electrolyzed water. J Food Protect 64(5):652–658CrossRefGoogle Scholar
  39. Koseki S, Yoshida K, Kamitani Y et al (2003) Influence of inoculation method, spot inoculation site, and inoculation size on the efficacy of acidic electrolyzed water against pathogens on lettuce. J Food Protect 66(11):2010–2016CrossRefGoogle Scholar
  40. Koseki S, Yoshida K, Isobe S et al (2004) Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Protect 67(6):1247–1251CrossRefGoogle Scholar
  41. Len SV, Hung YC, Chung D et al (2002) Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. J Agr Food Chem 50(1):209–212CrossRefGoogle Scholar
  42. Li XW, Sun SH, Li T (1996) Preliminary study of microbiocide effect and its mechanism of electrolyzed oxidizing water. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi 17(2):95Google Scholar
  43. Li J, Ding T, Liao X et al (2017) Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason Sonochem 38:711–719PubMedCrossRefPubMedCentralGoogle Scholar
  44. Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. J Food Eng 78(4):1326–1332CrossRefGoogle Scholar
  45. Liao X, Liu D, Xiang Q et al (2017a) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91CrossRefGoogle Scholar
  46. Liao X, Xuan X, Li J et al (2017b) Bactericidal action of slightly acidic electrolyzed water against Escherichia coli and Staphylococcus aureus via multiple cell targets. Food Control 79:380–385CrossRefGoogle Scholar
  47. Mackey BM (2000) Injured bacteria In the microbiological safety and quality of foods, vol I (ed Lund BM, Baird-Parker TC, Gould GW) Aspen Publishers, Inc., Gaithersburg, pp 315–341Google Scholar
  48. Manas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98(6):1387–1399PubMedCrossRefPubMedCentralGoogle Scholar
  49. Meireles A, Ferreira C, Melo L et al (2017) Comparative stability and efficacy of selected chlorine-based biocides against Escherichia coli in planktonic and biofilm states. Food Res Int 102:511–518PubMedCrossRefPubMedCentralGoogle Scholar
  50. Okull DO, Demirci A, Rosenberger D et al (2006) Susceptibility of Penicillium expansum spores to sodium hypochlorite, electrolyzed oxidizing water, and chlorine dioxide solutions modified with nonionic surfactants. J Food Prot 69(8):1944–1948PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ovissipour M, Al-Qadiri HM, Sablani SS et al (2016) Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control 62:405CrossRefGoogle Scholar
  52. Ozaki M, Ohshima T, Mukumoto M et al (2012) A study for biofilm removing and antimicrobial effects by microbubbled tap water and other functional water, electrolyzed hypochlorite water and ozonated water. Dent Mater J 31(4):662–668PubMedCrossRefPubMedCentralGoogle Scholar
  53. Pangloli P, Hung Y (2011) Efficacy of slightly acidic electrolyzed water in killing or reducing Escherichia coli O157:H7 on iceberg lettuce and tomatoes under simulated food service operation conditions. J Food Sci 76(6):M361–M366PubMedCrossRefGoogle Scholar
  54. Pangloli P, Hung Y (2013) Effects of water hardness and pH on efficacy of chlorine-based sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Food Control 32(2):626–631CrossRefGoogle Scholar
  55. Park H, Hung YC, Chung D (2004) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 91(1):13–18PubMedPubMedCentralCrossRefGoogle Scholar
  56. Park EJ, Alexander E, Taylor GA et al (2008a) Effects of organic matter on acidic electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. J Appl Microbiol 105(6):1802–1809PubMedCrossRefGoogle Scholar
  57. Park EJ, Alexander E, Taylor GA et al (2008b) Effect of electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. J Food Sci 73(6):M268–M272PubMedCrossRefGoogle Scholar
  58. Park EJ, Alexander E, Taylor GA et al (2009a) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol 26(4):386–390PubMedPubMedCentralCrossRefGoogle Scholar
  59. Park YB, Guo JY, Rahman SME et al (2009b) Synergistic effect of electrolyzed water and citric acid against Bacillus cereus cells and spores on cereal grains. J Food Sci 74(4):M185–M189PubMedCrossRefPubMedCentralGoogle Scholar
  60. Quan Y, Choi K, Chung D et al (2010) Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Int J Food Microbiol 136(3):255–260PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rahman SME, Ding T, Oh D (2010a) Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139(3):147–153PubMedCrossRefGoogle Scholar
  62. Rahman SME, Ding T, Oh D (2010b) Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21(10):1383–1387CrossRefGoogle Scholar
  63. Rahman SME, Jin Y, Oh D (2011) Combination treatment of alkaline electrolyzed water and citric acid with mild heat to ensure microbial safety, shelf-life and sensory quality of shredded carrots. Food Microbiol 28(3):484–491PubMedCrossRefGoogle Scholar
  64. Rahman SME, Khan I, Oh D (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci F 15(3):471–490CrossRefGoogle Scholar
  65. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525PubMedCrossRefPubMedCentralGoogle Scholar
  66. Stevenson S, Cook SR, Bach SJ et al (2004) Effects of water source, dilution, storage, and bacterial and fecal loads on the efficacy of electrolyzed oxidizing water for the control of Escherichia coli O157:H7. J Food Protect 67(7):1377–1383CrossRefGoogle Scholar
  67. Sun JL, Zhang SK, Chen JY et al (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58(4):448–454PubMedCrossRefPubMedCentralGoogle Scholar
  68. Suzuki T, Itakura J, Watanabe M et al (2002a) Inactivation of Staphylococcal enterotoxin-A with an electrolyzed anodic solution. J Agr Food Chem 50(1):230–234CrossRefGoogle Scholar
  69. Suzuki T, Noro T, Kawamura Y et al (2002b) Decontamination of aflatoxin-forming fungus and elimination of aflatoxin mutagenicity with electrolyzed NaCl anode solution. J Agr Food Chem 50(3):633–641CrossRefGoogle Scholar
  70. Tang W, Zeng X, Zhao Y et al (2011) Disinfection effect and its mechanism of electrolyzed oxidizing water on spores of Bacillus subtilis var niger. Food Sci Biotechnol 20(4):889CrossRefGoogle Scholar
  71. Tkhawkho L, Jackson K, Nitzan O et al (2017) Destruction of Clostridium difficile spores colitis using acidic electrolyzed water. Am J Infect Control 45(9):1053PubMedPubMedCentralCrossRefGoogle Scholar
  72. Torlak E (2014) Inactivation of Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples by neutral electrolyzed water. Int J Food Microbiol 185:69–72PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tu R, Ding C, Yin L et al (2015) Study on removal of ochratoxin a using slightly acidic electrolyzed water. J Chin Inst Food Sci Technol 15(11):128–134Google Scholar
  74. Vázquez-Sánchez D, Cabo ML, Rodríguez‐Herrera JJ (2014) Single and sequential application of electrolyzed water with benzalkonium chloride or peracetic acid for removal of staphylococcus aureus biofilms. J Food Safety 34(3):199–210CrossRefGoogle Scholar
  75. Venkitanarayanan KS, Ezeike GO, Hung YC et al (1999) Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl Environ Microb 65(9):4276–4279Google Scholar
  76. Virto R, Manas P, Alvarez I et al (2005) Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl Environ Microb 71(9):5022–5028CrossRefGoogle Scholar
  77. Vorobjeva NV, Vorobjeva LI, Khodjaev EY (2004) The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections. Artif Organs 28(6):590–592PubMedCrossRefPubMedCentralGoogle Scholar
  78. Wells-Bennik MH, Eijlander RT, Den Besten HM et al (2016) Bacterial spores in food: survival, emergence, and outgrowth. Annu Rev Food Sci Technol 7:457–482PubMedCrossRefPubMedCentralGoogle Scholar
  79. Wesche AM, Gurtler JB, Marks BP et al (2009) Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Protect 72(5):1121–1138PubMedCrossRefPubMedCentralGoogle Scholar
  80. Xie J, Sun X, Pan Y et al (2012) Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp. Food Control 23(2):320–324CrossRefGoogle Scholar
  81. Xiong K, Liu H, Liu R et al (2010) Differences in fungicidal efficiency against Aspergillus flavus for neutralized and acidic electrolyzed oxidizing waters. Int J Food Microbiol 137(1):67–75PubMedCrossRefPubMedCentralGoogle Scholar
  82. Xiong K, Liu HJ, Li LT (2012) Product identification and safety evaluation of aflatoxin B1 decontaminated by electrolyzed oxidizing water. J Agr Food Chem 60(38):9770–9778CrossRefGoogle Scholar
  83. Xuan XT, Ding T, Li J et al (2017) Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control 71:17–25CrossRefGoogle Scholar
  84. Ye Z, Wang S, Chen T et al (2017) Inactivation mechanism of Escherichia coli induced by slightly acidic electrolyzed water. SCI REP-UK 7(1):6279CrossRefGoogle Scholar
  85. Ye Z, Wang S, Gao W et al (2018) Inactivation in Aeromonas hydrophila induced by slightly acidic electrolyzed water in freshwater. Trans ASABE 61(1):305–314CrossRefGoogle Scholar
  86. Zhang XN, Li WP, Xu XL et al (2016a) Effects of electrolyzed oxidizing water of different ph values on the biofilm of methicillin-resistant staphylococcus aureus in vitro. Chin J Clin Res 29:169–172Google Scholar
  87. Zhang C, Li B, Jadeja R, Fang J et al (2016b) Effects of bacterial concentrations and centrifugations on susceptibility of Bacillus subtilis vegetative cells and Escherichia coli O157:H7 to various electrolyzed oxidizing water treatments. Food Control 60:440–446CrossRefGoogle Scholar
  88. Zhang C, Li B, Jadeja R, Hung Y (2016c) Effects of electrolyzed oxidizing water on inactivation of Bacillus subtilis and Bacillus cereus spores in suspension and on carriers. J Food Sci 81(1):M144–M149PubMedCrossRefGoogle Scholar
  89. Zhang C, Xia X, Li B et al (2018) Disinfection efficacy of electrolyzed oxidizing water on brown rice soaking and germination. Food Control 89:38–45CrossRefGoogle Scholar
  90. Zhao X, Zhong J, Wei C et al (2017) Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol 8:580PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press, Hangzhou 2019

Authors and Affiliations

  1. 1.Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory for Agro-Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro-Food ProcessingHangzhouChina
  3. 3.Fuli Institute of Food Science, Zhejiang UniversityHangzhouChina

Personalised recommendations