Advertisement

Nonlinear Impairments in Fiber Optic Communication Systems: Analytical Review

  • PayalEmail author
  • Suresh Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 958)

Abstract

Fiber optic communications provides an enormous bandwidth for high speed data transmission. Optical fiber is an excellent transmission medium due to its robustness and low losses. However, the dispersive and nonlinear effects of an optical fiber may lead to signal distortions. In long haul communication systems, transmission impairments accumulate over the fiber distance and utterly distort the signal. By compensating for dispersive and nonlinear impairments the transmission performance can be significantly improved. In the present work, a theoretical analysis of various kinds of optical fiber nonlinearities, their thresholds and managements is carried out. Also, it focusses on various digital and optical methods to compensate for dispersive and nonlinear distortions, which significantly enhance transmission performance and system capacity. All over the paper, current applications dealing with these effects have been referred. The present paper will help the researchers in this field to find the aggregate material on the subject and further narrowing the topic selection for research work.

Keywords

Wavelength Division Multiplexing (WDM) Erbium Doped Fiber Amplifier (EDFA) Amplified Spontaneous Emission (ASE) Conservation of Energy (COE) Mach Zehender Modulator (MZM) Optical Phase Modulator (OPM) Refractive Index (RI) Phase Modulation (PM) Higher Order Terms (HOD) Fiber Bragg Grating (FBG) 

References

  1. 1.
    Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press, Cambridge (2007)zbMATHGoogle Scholar
  2. 2.
    Mollenauer, L.F., Evangelides, S.G., Gordon, J.P.: Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers. J. Light. Technol. 9(3), 362–367 (1991). (ISSN 1558-2213)CrossRefGoogle Scholar
  3. 3.
    Hasegawa, A., Kodama, Y., Kumar, S.: Reduction of collision-induced time jitters in dispersion-managed soliton transmission systems. Opt. Lett. 21(1), 39–41 (1996).  https://doi.org/10.1364/OL.21.000039. (ISSN 1539-4794)CrossRefGoogle Scholar
  4. 4.
    Inoue, K.: Four wave mixing in an optical fiber in the zero-dispersion wavelength region. J. Light. Technol. 10(11), 1553–1561 (1992).  https://doi.org/10.1109/50.184893. (ISSN 1558-2213)CrossRefGoogle Scholar
  5. 5.
    Tkach, R., Chraplyvy, A., Forghieri, F., Gnauck, A., Derosier, R.: Four photon mixing and high-speed WDM systems. J. Light. Technol. 13(5), 841–849 (1995)CrossRefGoogle Scholar
  6. 6.
    Agrawal, G.P.: Nonlinear Fiber Optics, 2nd edn. Academic Press, San Diego (1995)zbMATHGoogle Scholar
  7. 7.
    Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)zbMATHGoogle Scholar
  8. 8.
    Boyd, R.: Nonlinear Optics. Academic Press, San Diego (1992)Google Scholar
  9. 9.
    Hellwarth, R.W., Cherlow, J., Yang, T.T.: Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Phys. Rev. B 11(2), 964 (1975). (ISSN 1943-8206)CrossRefGoogle Scholar
  10. 10.
    Hellwarth, R.W.: Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron. 5(1-A), 1–68 (1977).  https://doi.org/10.1364/JOSAB.2.000649. (ISSN 1520-8540)CrossRefGoogle Scholar
  11. 11.
    Shen, Y.R.: Principles of Nonlinear Optics. Wiley, New York (1984)Google Scholar
  12. 12.
    Stolen, R.H., Ippen, E.P.: Raman gain in glass optical waveguides. Appl. Phys. Lett. 22(6), 276 (1973).  https://doi.org/10.1063/1.1654637CrossRefGoogle Scholar
  13. 13.
    Vilhelmsson, K.: Simultaneous forward and backward Raman scattering in low-attenuation single-mode fibers. J. Lightw. Technol. LT-4(4), 400–404 (1986). (ISSN 1558-2213)CrossRefGoogle Scholar
  14. 14.
    Smith, R.G.: Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11(11), 2489 (1972).  https://doi.org/10.1364/AO.11.002489. (ISSN 2155-3165)CrossRefGoogle Scholar
  15. 15.
    Ippen, E.P., Stolen, R.H.: Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 21(11), 539 (1972).  https://doi.org/10.1063/1.1654249CrossRefGoogle Scholar
  16. 16.
    Stolen, R.H., Ippen, E.P., Tynes, A.R.: Raman oscillations in glass optical waveguides. Appl. Phys. Lett. 20(2), 62 (1972)CrossRefGoogle Scholar
  17. 17.
    Vanholsbeeck, F., Coen, S., Emplit, P., Haelterman, M., Thibaut, S.: Raman induced power tilt in arbitrarily large wavelength-division-multiplexed systems. IEEE Photon. Technol. Lett. 17(1), 88–90 (2005)CrossRefGoogle Scholar
  18. 18.
    Chi, H., Zou, X., Yao, J.: Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device. J. Light. Technol. 27(5), 511–521 (2009). (ISSN 1558-2213)CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Nain, A.: Simulative Investigation of WDM RoF systems including the effect of the raman crosstalk using different modulators. Telecommun. Radio Eng. 75(14), 1243–1254 (2016)CrossRefGoogle Scholar
  20. 20.
    Wegener, L.G.L., Povinelli, M.L., Green, A.G., Mitra, P.P., Stark, J.B., Littlewood, P.B.: The effect of propagating nonlinearities on the information capacity of WDM optical fiber systems: cross-phase modulation and four-wave mixing. Physica D 189(1–2), 81–99 (2004)CrossRefGoogle Scholar
  21. 21.
    Wu, M., Way, W.I.: Fiber nonlinearity limitations in ultra-dense WDM systems. J. Lightw. Technol. 22(6), 1483–1498 (2004)CrossRefGoogle Scholar
  22. 22.
    Chraplyvy, A.R.: Limitations on lightwave communications imposed by fiber optic nonlinearities. J. Lightw. Technol. 8(10), 1548 (1990). (ISSN 1558-2213)CrossRefGoogle Scholar
  23. 23.
    Singh, S.P., Singh, N.: Non-linear effects in optical fibers: origin, management and applications. Prog. Electromagn. Res., PIER 73, 249–275 (2007).  https://doi.org/10.2528/PIER07040201CrossRefGoogle Scholar
  24. 24.
    Mandal, B., Chowdhary, A.R.: Spatial soliton scattering in a quasi phase matched quadratic media in presence of cubic nonlinearity. J. Electromagn. Waves Appl. 21(1), 123–135 (2007)CrossRefGoogle Scholar
  25. 25.
    Nain, A., Kumar, S.: Performance investigation of different modulation schemes in RoF systems under the influence of self phase modulation. J. Opt. Commun. (2017).  https://doi.org/10.1515/joc-2016-0155. DG Gruyter, (ISSN 2191-6322, ISSN (Print) 0173-4911)CrossRefGoogle Scholar
  26. 26.
    Jiang, Z., Fan, C.: A comprehensive study on XPM and SRS induced noise in cascaded IM-DD optical fiber transmission systems. J. Light. Technol. 21(4), 953–960 (2003)CrossRefGoogle Scholar
  27. 27.
    Subramaniam, S., Abbou, F.M., Chuah, H.T., Dambul, K.D.: Performance evaluation of SCM-WDM microcellular communication system in the presence of XPM. IEICE Electron. Express 2, 192–197 (2005).  https://doi.org/10.1587/elex.2.192CrossRefGoogle Scholar
  28. 28.
    Kumar, N., Sharma, A.K., Kapoor, V.: Improved XPM-induced crosstalk with higher order dispersion in SCM–WDM optical transmission link. Optik 124, 941–944 (2014).  https://doi.org/10.1016/j.ijleo.2012.02.040. (ISSN 0030-4026)CrossRefGoogle Scholar
  29. 29.
    Sharma, A.K., Arya, S.K.: Improved analysis for SRS and XPM induced crosstalk in SCM-WDM transmission link in the presence of HOD. Optik 120, 773–781 (2009)CrossRefGoogle Scholar
  30. 30.
    Yang, F.S., Marhic, M.E., Kazovsky, L.G.: Nonlinear crosstalk and two countermeasures in SCM–WDM optical communication systems. J. Light. Technol. 18(4), 512–520 (2000)CrossRefGoogle Scholar
  31. 31.
    Nain, A., Kumar, S., Singla, S.: Impact of XPM crosstalk on SCM-based RoF systems. J. Opt. Commun. (2016).  https://doi.org/10.1515/joc-2016-0045. (ISSN 0173-4911)
  32. 32.
    Toulouse, J.: Optical nonlinearities in fibers: review, recent examples, and systems applications. J. Light. Technol. 23(11), 3625 (2005)CrossRefGoogle Scholar
  33. 33.
    Singh, S.P., Kar, S., Jain, V.K.: Novel strategies for reducing FWM using modified repeated unequally spaced channel allocation. Fiber Integr. Opt. 6, 415–437 (2004)CrossRefGoogle Scholar
  34. 34.
    Hedekvist, P.O., Karlsson, M., Andrekson, P.A.: Fiber fourwave mixing demultiplexing with inherent parametric amplification. J. Light. Technol. 15(11), 2051–2058 (1997)CrossRefGoogle Scholar
  35. 35.
    Hansryd, J., Andrekson, P.A., Westlund, M., Li, J., Hedekvist, P.O.: Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002)CrossRefGoogle Scholar
  36. 36.
    Ciaramella, E., Curti, F., Trillo, S.: All-optical signal reshaping by means of four-wave mixing in optical fibers. IEEE Photon. Technol. Lett. 13(2), 142–144 (2001)CrossRefGoogle Scholar
  37. 37.
    Li, S., Kuksenkov, D.V.: A novel dispersion monitoring technique based on four-wave mixing in optical fiber. IEEE Photon. Technol. Lett. 16(3), 942–944 (2004)CrossRefGoogle Scholar
  38. 38.
    Tsuji, K., Yokota, H., Saruwatari, A.M.: Influence of dispersion fluctuations on four-wave mixing efficiency in optical fibers. Electron. Commun. Jpn. (Part II: Electron.) 85(8), 16–24 (2002)CrossRefGoogle Scholar
  39. 39.
    Agrawal, G.P., Lin, Q.: Impact of polarization-mode dispersion on measurement of zero-dispersion wavelength through four-wave mixing. IEEE Photon. Technol. Lett. 15(12), 1719–1721 (2003)CrossRefGoogle Scholar
  40. 40.
    Lin, Q., Agrawal, G.P.: Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers. J. Opt. Soc. Amer., B, Opt. Phys. 21(6), 1216–1224 (2004)CrossRefGoogle Scholar
  41. 41.
    Tomlinson, W.J., Stolen, R.H., Johnson, A.M.: Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10(9), 457 (1985)CrossRefGoogle Scholar
  42. 42.
    Xu, W., Zhang, S., Chen, W., Luo, A., Liu, S.: Modulation instability of femtosecond pulses in dispersion-decreasing fibers. Opt. Commun. 199(5–6), 355–360 (2001)CrossRefGoogle Scholar
  43. 43.
    Hui, R., Sullivan, M.O., Robinson, A., Taylor, M.: Modulation instability and its impact in multi span optical amplified IMDD systems: theory and experiments. J. Lightw. Technol. 15(7), 1071–1082 (1997)CrossRefGoogle Scholar
  44. 44.
    Zhang, H., Wen, S., Han, W., Wu, J.: Generic features of modulation instability in optical fibers. In: Proceedings of SPIE—International Society for Optical Engineering, Wuhan, China, vol. 5279, no. 1, pp. 443–449 (2004)Google Scholar
  45. 45.
    Tanemura, T., Ozeki, Y., Kikuchi, K.: Modulational instability and parametric amplification induced by loss dispersion in optical fibers. Phys. Rev. Lett. 93(16), 163902-1–163902-4 (2004)CrossRefGoogle Scholar
  46. 46.
    Semrau, D., et al.: Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping. Opt. Lett. 42(1), 121–124 (2017)CrossRefGoogle Scholar
  47. 47.
    Antos, A.J., Smith, D.K.: Design and characterization of dispersion compensating fiber based on the LP01 mode. J. Light. Technol. 12(10), 1739–1745 (1994)CrossRefGoogle Scholar
  48. 48.
    Hill, K., et al.: Chirped in-fiber Bragg gratings for compensation of optical fiber dispersion. Opt. Lett. 19(17), 1314–1316 (1994)CrossRefGoogle Scholar
  49. 49.
    Pepper, D.M., Yariv, A.: Compensation for phase distortions in nonlinear media by phase conjugation. Opt. Lett. 5(2), 59–60 (1980).  https://doi.org/10.1364/OL.5.000059. (ISSN 1539-4794)CrossRefGoogle Scholar
  50. 50.
    Watanabe, S., Chikama, T.: Cancellation of four-wave mixing in multichannel fiber transmission by midway optical phase conjugation. Electron. Lett. 30(14), 1156–1157 (1994)CrossRefGoogle Scholar
  51. 51.
    Martelli, P., et al.: All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal. Opt. Express 17(20), 17758–17763 (2009)CrossRefGoogle Scholar
  52. 52.
    Trapala, K.S., Inoue, T., Namiki, S.: Nearly-ideal optical phase conjugation based nonlinear compensation system. In: Optical Fiber Communication Conference, p. W3F.8. Optical Society of America (2014)Google Scholar
  53. 53.
    Kumar, S., Yang, D.: Optical backpropagation for fiber-optic communications using highly nonlinear fibers. Opt. Lett. 36(7), 1038–1040 (2011)CrossRefGoogle Scholar
  54. 54.
    Shao, J., Kumar, S.: Optical backpropagation for fiber-optic communications using optical phase conjugation at the receiver. Opt. Lett. 37(15), 3012–3014 (2012)CrossRefGoogle Scholar
  55. 55.
    Kumar, S., Shao, J.: Optical back propagation with optimal step size for fiber optic transmission systems. IEEE Photon. Technol. Lett. 25, 523–526 (2013)CrossRefGoogle Scholar
  56. 56.
    Cartledge, J.C., Guiomar, F.P., Kschischang, F.R., Liga, G., Yankov, M.P.: Digital signal processing for fiber nonlinearities. Opt. Express 25(3), 1916 (2017).  https://doi.org/10.1364/OE.25.001916CrossRefGoogle Scholar
  57. 57.
    Li, G.: Recent advances in coherent optical communication. Adv. Opt. Photonics 1(2), 279–307 (2009)CrossRefGoogle Scholar
  58. 58.
    Taylor, M.G.: Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett. 16(2), 674–676 (2004). (ISSN 1041-1135)CrossRefGoogle Scholar
  59. 59.
    Savory, S.J.: Digital filters for coherent optical receivers. Opt. Express 16(2), 804–817 (2008)CrossRefGoogle Scholar
  60. 60.
    Goldfarb, G., Li, G.: Chromatic dispersion compensation using digital IIR filtering with coherent detection. IEEE Photon. Technol. Lett. 19(13), 969–971 (2007). (ISSN 1041-1135)CrossRefGoogle Scholar
  61. 61.
    Ip, E., Kahn, J.M.: Digital equalization of chromatic dispersion and polarization mode dispersion. J. Light. Technol. 25(8), 2033–2043 (2007)CrossRefGoogle Scholar
  62. 62.
    Rafique, D., Mussolin, M., Forzati, M., Martensson, J., Chugtai, M.N., Ellis, A.D.: Compensation of intra-channel nonlinear fiber impairments using simplified digital backpropagation algorithm. Opt. Express 19(10), 9453 (2011)CrossRefGoogle Scholar
  63. 63.
    Xu, T., et al.: Modulation format dependence of digital nonlinearity compensation performance in optical fiber communication systems. Opt. Express 25(4), 3311 (2017)CrossRefGoogle Scholar
  64. 64.
    Bayvel, P., et al.: Maximizing the optical network capacity. Phil. Trans. R. Soc. A 374, 20140440 (2016).  https://doi.org/10.1098/rsta.2014.0440CrossRefGoogle Scholar
  65. 65.
    Rafique, D., Ellis, A.D.: Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems. Opt. Express 19, 3449–3454 (2011).  https://doi.org/10.1364/oe.19.003449CrossRefGoogle Scholar
  66. 66.
    Gao, G., Chen, X., Shieh, W.: Influence of PMD on fiber nonlinearity compensation using digital back propagation. Opt. Express 20, 14406–14418 (2012).  https://doi.org/10.1364/oe.20.014406CrossRefGoogle Scholar
  67. 67.
    Liga, G., Xu, T., Alvarado, A., Killey, R.I., Bayvel, P.: On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission. Opt. Express 22, 30053–30062 (2014).  https://doi.org/10.1364/oe.22.030053CrossRefGoogle Scholar
  68. 68.
    Temprana, E., et al.: Twofold transmission reach enhancement enabled by transmitter-side digital backpropagation and optical frequency comb-derived information carriers. Opt. Express 23, 20774–20783 (2015).  https://doi.org/10.1364/oe.23.020774CrossRefGoogle Scholar
  69. 69.
    Lavery, D., Ives, D., Liga, G., Alvarado, A., Savory, S.J., Bayvel, P.: The benefit of split nonlinearity compensation for optical fiber communications (2015). (http://arxiv.org/abs/1511.04028)

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.ECE DepartmentUniversity Institute of Engineering and Technology (UIET), MDURohtakIndia

Personalised recommendations